20.已知命題p:?x>0,總有(x+1)ex>1.則¬p為?x0>0,使得$({x_0}+1){e^{x_0}}≤1$.

分析 命題p是全稱命題,其否定應(yīng)為特稱命題,注意量詞和不等號的變化.

解答 解:命題p:?x>0,總有(x+1)ex>1”是全稱命題,
否定時將量詞對任意的x變?yōu)?x,再將不等號>變?yōu)椤芗纯桑?br />故答案為:?x0>0,使得$({x_0}+1){e^{x_0}}≤1$.

點評 本題考查命題的否定,全稱命題和特稱命題,屬基本知識的考查.注意在寫命題的否定時量詞的變化,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)拋物線x2=2y的焦點為F,經(jīng)過點P(1,3)的直線l與拋物線相交于A,B兩點,且點P恰為AB的中點,則$|\overrightarrow{AF}|+|\overrightarrow{BF}|$=7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.過拋物線C:y2=8x的焦點作直線l與C交于A,B兩點,它們到直線x=-3的距離之和等于7,則滿足條件的l(  )
A.恰有一條B.恰有兩條C.有無數(shù)多條D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合A={x∈N|x≤1},B={x|x2-x-2≤0},則A∩B=( 。
A.{0,1}B.{-1,0,1}C.[-1,1]D.{1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在△ABC中,∠B=$\frac{π}{3}$,D為邊BC上的點,E為AD上的點,且AE=8,AC=4$\sqrt{10}$,∠CED=$\frac{π}{4}$.
(1)求CE的長
(2)若CD=5,求cos∠DAB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若$\frac{ai}{2-i}=1-2i$,則a=( 。
A.5B.-5C.5iD.-5i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知$f(x)=lg\frac{x}{2-x}$,若f(a)+f(b)=0,則$\frac{4}{a}+\frac{1}$的最小值是$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若x,y滿足約束條件$\left\{\begin{array}{l}x≥1\\ x+y≤0\\ x-y-3≤0\end{array}\right.$,設(shè)x2+y2+4x的最大值點為A,則經(jīng)過點A和B(-2,-3)的直線方程為( 。
A.3x-5y-9=0B.x+y-3=0C.x-y-3=0D.5x-3y+9=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.全美職業(yè)籃球聯(lián)賽(NBA)某年度總決賽在克利夫蘭騎士隊與金州勇士隊之間角逐,比賽采用七局四勝制,即若有一隊先勝四場,則此隊獲勝,比賽就此結(jié)束.因兩隊實力相當,故每場比賽獲勝的可能性相等.據(jù)以往資料統(tǒng)計,第一場比賽組織者可獲得門票收入2000萬美元,以后每場比賽門票收入比上一場增加100萬美元.當兩隊決出勝負后,
問:(1)組織者在此次決賽中要獲得門票收入不少于13500萬美元的概率為多少?
(2)某隊在比賽過程中曾一度比分(勝一場得1分)落后2分以上(含2分),最后取得全場勝利稱為“逆襲”,求騎士隊“逆襲”獲勝的概率;
(3)求此次決賽所需比賽場數(shù)的概率分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案