20.在△ABC中,點D滿足$\overrightarrow{BC}$=3$\overrightarrow{BD}$,則( 。
A.$\overrightarrow{AD}$=$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$B.$\overrightarrow{AD}$=$\frac{1}{3}$$\overrightarrow{AB}$-$\frac{2}{3}$$\overrightarrow{AC}$C.$\overrightarrow{AD}$=$\frac{2}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$D.$\overrightarrow{AD}$=$\frac{2}{3}$$\overrightarrow{AB}$-$\frac{1}{3}$$\overrightarrow{AC}$

分析 根據(jù)向量的三角形的法則和向量的加減的幾何意義計算即可.

解答 解:△ABC中,點D滿足$\overrightarrow{BC}$=3$\overrightarrow{BD}$,
則$\overrightarrow{AD}$=$\overrightarrow{AB}$+$\overrightarrow{BD}$=$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{BC}$=$\overrightarrow{AB}$+$\frac{1}{3}$($\overrightarrow{AC}$-$\overrightarrow{AB}$)=$\frac{2}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$,
故選:C

點評 本題考查了向量的三角形的法則和向量的加減的幾何意義,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知$|{\overrightarrow a}|=|{\overrightarrow b}|=1$,且$|{\overrightarrow a+k\overrightarrow b}|=\sqrt{3}|{k\overrightarrow a-\overrightarrow b}|(k>0)$,令$f(k)=\overrightarrow a•\overrightarrow b$.
(1)求$f(k)=\overrightarrow a•\overrightarrow b$(用k表示);
(2)當(dāng)k>0時,$f(k)≥{x^2}-2tx-\frac{5}{2}$對任意的t∈[-2,2]恒成立,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知⊙O:x2+y2=2,⊙M:(x+2)2+(y+2)2=2,點P的坐標(biāo)為(1,1).
(1)過點O作⊙M的切線,求該切線的方程;
(2)若點Q是⊙O上一點,過Q作⊙M的切線,切點分別為E,F(xiàn),且∠EQF=$\frac{π}{3}$,求Q點的坐標(biāo);
(3)過點P作兩條相異直線分別與⊙O相交于A,B,且直線PA與直線PB的傾斜角互補(bǔ),試判斷直線OP與AB是否平行?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.以(a,1)為圓心,且與兩直線x-y+1=0及x-y-3=0同時相切的圓的標(biāo)準(zhǔn)方程為(  )
A.x2+(y-1)2=2B.(x-2)2+(y-1)2=2C.x2+(y-1)2=8D.(x-2)2+(y-1)2=8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)等比數(shù)列{an}的各項均為正數(shù),其前n項和為Sn,若a1=1,a3=4.
(1)若Sk=63,求k的值;
(2)設(shè)bn=log2an,證明數(shù)列{bn}是等差數(shù)列;
(3)設(shè)cn=(-1)nbn,求T=|c1|+|c2|+|c3|+…+|cn|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)f(x)=$\frac{sin4x}{1+cos4x}$的最小正周期是$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=ex-$\frac{1}{2}$x2,設(shè)l為曲線y=f(x)在點P(x0,f(x0))處的切線,其中x0∈[-1,1].
(1)求直線l的方程(用x0表示)
(2)求直線l在y軸上的截距的取值范圍;
(3)設(shè)直線y=a分別與曲線y=f(x)(x∈[0,+∞))和射線y=x-1(x∈[0,+∞))交于M,N兩點,求|MN|的最小值及此時a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)函數(shù)f(x)=|x+1|-|x-1|+a(a∈R).
(Ⅰ)當(dāng)a=1時,求不等式f(x)>0的解集;
(Ⅱ)若方程f(x)=x只有一個實數(shù)根,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=x-(a+1)lnx-$\frac{a}{x}$,其中a∈R.
(Ⅰ)求證:當(dāng)a=1時,函數(shù)y=f(x)沒有極值點;
(Ⅱ)求函數(shù)y=f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案