6.△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知$\sqrt{3}$acosC-csinA=$\sqrt{3}$b.
(Ⅰ)求A;
(Ⅱ)若a=7,△ABC的周長(zhǎng)為15,求△ABC的面積.

分析 (Ⅰ)由內(nèi)角和定理、誘導(dǎo)公式、兩角和的正弦函數(shù)化簡(jiǎn)已知的式子,由內(nèi)角的范圍和特殊角的三角函數(shù)值求出A;
(Ⅱ)由題意求出b+c的值,由條件和余弦定理列出方程化簡(jiǎn)后求出bc的值,由三角形的面積公式求出△ABC的面積.

解答 解:(Ⅰ)∵$\sqrt{3}$acosC-csinA=$\sqrt{3}$b,
∴由正弦定理得,$\sqrt{3}$sinAcosC-sinCsinA=$\sqrt{3}$sinB,
又A+B+C=π,則$\sqrt{3}$sinAcosC-sinCsinA=$\sqrt{3}$sinB=$\sqrt{3}$sin(A+C),
∴$\sqrt{3}$sinAcosC-sinCsinA=$\sqrt{3}$(sinAcosC+cosAsinC)
化簡(jiǎn)得,-sinCsinA=$\sqrt{3}$cosAsinC,
∵sinC≠0,∴-sinA=$\sqrt{3}$cosA,則tanA=$-\sqrt{3}$,
∵0<A<π,∴A=$\frac{2π}{3}$;
(Ⅱ)∵a=7,△ABC的周長(zhǎng)為15,∴b+c=8,
由余弦定理得,a2=b2+c2-2bccosA=b2+c2+bc=(b+c)2-bc,
∴64-bc=49,則bc=15,
∴△ABC的面積S=$\frac{1}{2}bcsinA$=$\frac{1}{2}×15×\frac{\sqrt{3}}{2}$=$\frac{15\sqrt{3}}{4}$.

點(diǎn)評(píng) 本題考查余正弦定理、弦定理,三角形的面積公式,以及兩角和的正弦函數(shù)等公式的應(yīng)用,考查化簡(jiǎn)、化簡(jiǎn)能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.下表是隨機(jī)抽取的某市五個(gè)地段五種不同戶型新電梯房面積x(單位:十平方米)和相應(yīng)的房?jī)r(jià)y(單位:萬(wàn)元)統(tǒng)計(jì)表:
x79101113
y40757090105
(1)求用最小二乘法得到的回歸直線方程(參考公式和數(shù)據(jù):$\widehat{y}$=$\frac{\sum_{i-1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{y}$=$\widehat$x+$\widehat{a}$,$\sum_{i=1}^{5}$xiyi=4010);
(2)請(qǐng)估計(jì)該市一面積為120m2的新電梯房的房?jī)r(jià).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知命題:“若x2>y2,則x>y”則原命題、逆命題、否命題、逆否命題這四個(gè)命題中,真命題的個(gè)數(shù)是(  )
A.0B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)i為虛數(shù)單位,復(fù)數(shù)z滿足$\frac{(1+i)^{2}}{z}$=1-i,則復(fù)數(shù)$\overline{z}$=( 。
A.-1-iB.1-iC.-1+iD.1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知點(diǎn)A(1,1)和B($\frac{7}{6}$,$\frac{7}{9}$),直線l:ax+by-7=0,若直線l與線段AB有公共點(diǎn),則a2+b2的最小值為( 。
A.24B.$\frac{49}{2}$C.25D.$\frac{324}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)i是虛數(shù)單位,復(fù)數(shù)z=(1-2i)(i+4),則|z|=( 。
A.$\sqrt{65}$B.5$\sqrt{3}$C.$\sqrt{85}$D.$\sqrt{95}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且滿足4a2cosB-2accosB=a2+b2-c2
(Ⅰ)求角B的大小;
(Ⅱ)當(dāng)函數(shù)f(A)=2sin2(A+$\frac{π}{4}$)-cos(2A+$\frac{π}{6}$)取最大值時(shí),判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.同時(shí)拋擲兩顆質(zhì)地相同的骰子(各面上分別標(biāo)有1,2,3,4,5,6的正方體玩具),點(diǎn)數(shù)之和是5的概率是$\frac{1}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.根據(jù)規(guī)律填出后面的第幾個(gè)數(shù),現(xiàn)給出一組數(shù):$\frac{1}{2}$,$\frac{1}{2}$,$\frac{3}{8}$,$\frac{1}{4}$,$\frac{5}{32}$,它的第8個(gè)數(shù)是$\frac{1}{32}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案