分析 (1)當(dāng)a=-1時,命題$p:?n∈{N}^{*},{(-1)}^{n+1}<2+\frac{{(-1)}^{n+1}}{n}$,即$(1-\frac{1}{n}{)(-1)}^{n+1}<2$,可判斷其真假;
命題q:當(dāng)$?x∈(0,\frac{π}{2}),(sinx+1)(cosx+1)=1$,即$?x∈(0,\frac{π}{2})$,sinx+cosx=-sinxcosx,可判斷其真假;
(2)如果p∧q為假命題,p∨q為真命題,則命題p,q一真一假,進而得到實數(shù)a的取值范圍.
解答 解:(1)當(dāng)a=-1時,
命題$p:?n∈{N}^{*},{(-1)}^{n+1}<2+\frac{{(-1)}^{n+1}}{n}$,
即$(1-\frac{1}{n}{)(-1)}^{n+1}<2$恒成立,
故命題p為真命題;
命題q:當(dāng)$?x∈(0,\frac{π}{2}),(sinx+1)(cosx+1)=1$,
即$?x∈(0,\frac{π}{2})$,sinx+cosx=-sinxcosx,
由sinx+cosx>0,-sinxcosx<0得:命題q為假命題,
(2)若命題$p:?n∈{N^*},{({-1})^n}•({2a+1})<2+\frac{{{{({-1})}^{n+1}}}}{n}$為真,
即$\left\{\begin{array}{l}2a+1>-2-\frac{1}{n},n為奇數(shù)\\ 2a+1<2-\frac{1}{n},n為偶數(shù)\end{array}\right.$恒成立,
即$\left\{\begin{array}{l}2a>-3-\frac{1}{n},n為奇數(shù)\\ 2a<1-\frac{1}{n},n為偶數(shù)\end{array}\right.$恒成立,
即$\left\{\begin{array}{l}2a≥-3\\ 2a<\frac{1}{2}\end{array}\right.$,
解得:a∈$[-\frac{3}{2},\frac{1}{4})$,
若命題q:當(dāng)$?x∈({0,\frac{π}{2}}),({sinx-a})({cosx-a})={a^2}$為真,
即sinx+cosx=asinxcosx,
即a=$\frac{sinxcosx}{sinx+cosx}$,
令t=sinx+cosx,t∈(1,$\sqrt{2}$],
則a=$\frac{1}{2}$(t-$\frac{1}{t}$)∈(0,$\frac{\sqrt{2}}{4}$],
如果p∧q為假命題,p∨q為真命題,
則命題p,q一真一假;
當(dāng)p真q假時,a∈$[-\frac{3}{2},0]$,
當(dāng)p假q真時,a∈$[\frac{1}{4},\frac{\sqrt{2}}{4}]$,
綜上可得:a∈$[-\frac{3}{2},0]$∪$[\frac{1}{4},\frac{\sqrt{2}}{4}]$.
點評 本題以命題的真假判斷與應(yīng)用為載體,考查了四種命題,特稱命題的否定,難度中檔.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4個 | B. | 5個 | C. | 6個 | D. | 8個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{3}{5}$ | C. | 4 | D. | $\frac{5}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{π}{6}$ | C. | $\frac{5π}{12}$ | D. | $\frac{π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,±3) | B. | (±3,0) | C. | (±1,0) | D. | (0,±1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com