20.已知函數(shù)f(x)=x2+ax+b.
(1)若對任意的實數(shù)x,都有f(x)≥2x+a,求b的取值范圍;
(2)當x∈[-1,1]時,f(x)的最大值為M,求證:M≥b+1.

分析 (1)利用二次函數(shù)的≥0?△=(a-2)2-4(b-a)≤0即可求解.
(2)由題意x∈[-1,1]時,f(x)的最大值為M,即f(1)=1+a+b≤M,f(-1)=1-a+b≤M,利用不等式的性質(zhì)可得M≥b+1.

解答 解:由題意:函數(shù)f(x)=x2+ax+b.
∴f(x)≥2x+a?x2+(a-2)x+(b-a)≥0;
∵對任意的x∈R恒成立,可得:△=(a-2)2-4(b-a)≤0,
$?b≥1+\frac{a^2}{4}?b≥1(∵a∈R)$
故得b的取值范圍是[1,+∞).
(2)證明:x∈[-1,1]時,f(x)的最大值為M,
即f(1)=1+a+b≤M,f(-1)=1-a+b≤M
∴2M≥2b+2,即M≥b+1.
得證.

點評 本題考查了二次函數(shù)大于0的恒成立的問題,轉(zhuǎn)化為判別式求解.同時考查了同向不等式相加的性質(zhì).屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

10.已知數(shù)列{an}的前n項和為Sn,且Sn=$\frac{{n}^{2}}{2}$+$\frac{3n}{2}$.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足bn=an+2-an+$\frac{1}{{a}_{n+1}-{a}_{n}}$,且數(shù)列{bn}的前n項和為Tn,求證:Tn<2n+$\frac{5}{12}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.令a=0.20.1,b=log0.20.1,則有(  )
A.b>1>aB.a>1>bC.a>b>1D.1>b>a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.若一個幾何體各個頂點或其外輪廓曲線都在某個球的球面上,那么稱這個幾何體內(nèi)接于該球,已知球的體積為$\frac{32π}{3}$,那么下列可以內(nèi)接于該球的幾何體為( 。
A.底面半徑為1,且體積為$\frac{4π}{3}$的圓錐B.底面積為1,高為$\sqrt{14}$的正四棱柱
C.棱長為3的正四面體D.棱長為3的正方體

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知f(x2-1)定義域為[0,3],則f(2x-1)的定義域為( 。
A.[1,$\frac{3}{2}$]B.[0,$\frac{9}{2}$]C.[-3,15]D.[1,3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.下列函數(shù)中,既是偶函數(shù)又在區(qū)間(-∞,0)上單調(diào)遞增的是( 。
A.f(x)=$\frac{1}{{x}^{2}}$B.f(x)=x2+1C.f(x)=xD.f(x)=2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.若二次函數(shù)f(x)=ax2+bx+c的圖象頂點坐標為(-1,-4)且f(0)=-3.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若函數(shù)g(x)=$\left\{\begin{array}{l}{a{x}^{2}+bx+c,(x≤0)}\\{{x}^{2}-2x-3,(x>0)}\end{array}\right.$,畫出函數(shù)g(x)圖象并求單調(diào)區(qū)間;
(Ⅲ)求函數(shù)g(x)在[-3,2]的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知定義域為R的奇函數(shù)f(x)滿足f(log2x)=$\frac{-x+a}{x+1}$.
(1)求函數(shù)f(x)的解析式;
(2)判斷并證明f(x)在定義域 R的單調(diào)性;
(3)若對任意的t∈R,不等式f(t2-2t)+f(3t2-k)<0恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.(1)(log2125+log425+log85)(log52+log254+log1258);
(2)($\root{3}{25}-\sqrt{125}$)÷$\root{4}{25}$.

查看答案和解析>>

同步練習冊答案