【題目】已知橢圓過(guò)點(diǎn)兩點(diǎn).
(Ⅰ)求橢圓的方程及離心率;
(Ⅱ)設(shè)為第三象限內(nèi)一點(diǎn)且在橢圓上,橢圓與y軸正半軸交于B點(diǎn),直線(xiàn)與軸交于點(diǎn),直線(xiàn)與軸交于點(diǎn),求證:四邊形的面積為定值.
【答案】(Ⅰ),離心率: ;(Ⅱ)見(jiàn)解析.
【解析】試題分析:(Ⅰ)由題意可得,則橢圓的方程可求,再根據(jù),可得,從而求出離心率;(Ⅱ)設(shè)(, ),根據(jù), ,求出直線(xiàn)的方程及直線(xiàn)的方程,得到, 的坐標(biāo),從而求得和,由四邊形的面積,結(jié)合點(diǎn)在橢圓上,化簡(jiǎn)可得定值.
試題解析:(Ⅰ)由題意得: . 所以橢圓的方程為: .
又∵
∴離心率.
(Ⅱ)設(shè)(, ),則.
又∵, ,
∴直線(xiàn)的方程為.
令,得,從而.
直線(xiàn)的方程為.
令,得,從而.
∴四邊形的面積 .
∴四邊形的面積為定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知短軸長(zhǎng)為2的橢圓,直線(xiàn)的橫、縱截距分別為,且原點(diǎn)到直線(xiàn)的距離為.
(1)求橢圓的方程;
(2)直線(xiàn)經(jīng)過(guò)橢圓的右焦點(diǎn)且與橢圓交于兩點(diǎn),若橢圓上存在一點(diǎn)滿(mǎn)足,求直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)的最大值;
(2)令既有極大值,又有極小值,求實(shí)數(shù)a的范圍;
(3)求證:當(dāng)以.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某基地蔬菜大棚采用水培、無(wú)土栽培方式種植各類(lèi)蔬菜.過(guò)去50周的資料顯示,該地周光照量(小時(shí))都在30小時(shí)以上,其中不足50小時(shí)的周數(shù)有5周,不低于50小時(shí)且不超過(guò)70小時(shí)的周數(shù)有35周,超過(guò)70小時(shí)的周數(shù)有10周.根據(jù)統(tǒng)計(jì),該基地的西紅柿增加量(百斤)與使用某種液體肥料(千克)之間對(duì)應(yīng)數(shù)據(jù)為如圖所示的折線(xiàn)圖.
(1)依據(jù)數(shù)據(jù)的折線(xiàn)圖,是否可用線(xiàn)性回歸模型擬合與的關(guān)系?請(qǐng)計(jì)算相關(guān)系數(shù)并加以說(shuō)明(精確到0.01).(若,則線(xiàn)性相關(guān)程度很高,可用線(xiàn)性回歸模型擬合)
(2)蔬菜大棚對(duì)光照要求較大,某光照控制儀商家為該基地提供了部分光照控制儀,但每周光照控制儀最多可運(yùn)行臺(tái)數(shù)受周光照量限制,并有如下關(guān)系:
周光照量(單位:小時(shí)) | |||
光照控制儀最多可運(yùn)行臺(tái)數(shù) | 3 | 2 | 1 |
若某臺(tái)光照控制儀運(yùn)行,則該臺(tái)光照控制儀周利潤(rùn)為3000元;若某臺(tái)光照控制儀未運(yùn)行,則該臺(tái)光照控制儀周虧損1000元.若商家安裝了3臺(tái)光照控制儀,求商家在過(guò)去50周周總利潤(rùn)的平均值.
附:相關(guān)系數(shù)公式,參考數(shù)據(jù),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列 (n=1,2,3,…)的前n項(xiàng)和Sn滿(mǎn)足,且, , 成等差數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓()的離心率為,點(diǎn)在橢圓上,直線(xiàn)過(guò)橢圓的右焦點(diǎn)且與橢圓相交于兩點(diǎn).
(1)求的方程;
(2)在軸上是否存在定點(diǎn),使得為定值?若存在,求出定點(diǎn)的坐標(biāo),若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(Ⅰ)當(dāng)時(shí),求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程.
(Ⅱ)當(dāng)時(shí),若曲線(xiàn)上的點(diǎn)都在不等式組所表示的平面區(qū)域內(nèi),試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以A表示值域?yàn)?/span>R的函數(shù)組成的集合,B表示具有如下性質(zhì)的函數(shù)組成的集合:對(duì)于函數(shù),存在一個(gè)正數(shù)M,使得函數(shù)的值域包含于區(qū)間.例如,當(dāng)時(shí), . 現(xiàn)有如下命題:
①設(shè)函數(shù)的定義域?yàn)?/span>D,則“”的充要條件是“”;
②若函數(shù),則有最大值和最小值;
③若函數(shù)的定義域相同,且,則;
④若函數(shù)有最大值,則.
其中的真命題有___________. (寫(xiě)出所有真命題的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),若函數(shù)存在零點(diǎn),求實(shí)數(shù)的取值范圍;
(Ⅱ)若恒成立,求的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com