分析 (1)設(shè)等差數(shù)列{an}的公差為d>0,等比數(shù)列{bn}的公比為q,由a1=3,b1=1,且b2S2=64,b3S3=960.可得q(6+d)=64,q2(9+3d)=960,解得d,q.即可得出.
(2)由(1)可得:Sn=n(n+2).可得$\frac{1}{{S}_{n}}$=$\frac{1}{n(n+2)}$=$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$.利用“裂項(xiàng)求和”與數(shù)列的單調(diào)性即可得出.
解答 (1)解:設(shè)等差數(shù)列{an}的公差為d>0,等比數(shù)列{bn}的公比為q,
∵a1=3,b1=1,且b2S2=64,b3S3=960.
∴q(6+d)=64,q2(9+3d)=960,化為:5d2-4d-12=0,
解得d=2,q=8.
∴an=3+2(n-1)=2n+1,bn=8n-1.
(2)證明:由(1)可得:Sn=$\frac{n(3+2n+1)}{2}$=n(n+2).
∴$\frac{1}{{S}_{n}}$=$\frac{1}{n(n+2)}$=$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$.
∴$\frac{1}{S1}$+$\frac{1}{S2}$+…+$\frac{1}{Sn}$=$\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{2}-\frac{1}{4})$+$(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{n-1}-\frac{1}{n+1})$+$(\frac{1}{n}-\frac{1}{n+2})]$
=$\frac{1}{2}(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})$<$\frac{3}{4}$.
∴∴$\frac{1}{S1}$+$\frac{1}{S2}$+…+$\frac{1}{Sn}$<$\frac{3}{4}$.
點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式與求和公式、“裂項(xiàng)求和”與數(shù)列的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -8 | B. | -12 | C. | -20 | D. | 20 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,0) | B. | (-∞,-$\frac{1}{2}$] | C. | [-$\frac{1}{2}$,0) | D. | (-∞,0)∪[2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
日需求量 | 3 | 4 | 5 | 6 | 7 |
頻數(shù) | 2 | 3 | 15 | 6 | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {-1,2} | B. | {-1,0} | C. | {0,1} | D. | {1,2} |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com