A. | 若m∥α,m∥β,α∩β=n,則m∥n | B. | 若α⊥β,m⊥α,n⊥β,則m⊥n | ||
C. | 若α⊥β,α⊥γ,β∩γ=m,則m⊥α | D. | 若α∥β,m∥α,則m∥β |
分析 對4個命題分別進行判斷,即可得出結(jié)論.
解答 解:對于A,因為若m∥α,m∥β,α∩β=n,根據(jù)線面平行的性質(zhì)與判定,可得m∥n,正確;
對于B,由m⊥α,n⊥β且α⊥β,則m與n一定不平行,否則有α∥β,與已知α⊥β矛盾,
通過平移使得m與n相交,且設(shè)m與n確定的平面為γ,
則γ與α和β的交線所成的角即為α與β所成的角,因為α⊥β,所以m與n所成的角為90°,故命題正確.
對于C,因為γ,β 垂直于同一個平面α,故γ,β 的交線一定垂直于α,正確.
對于D,若α∥β,m∥α,則m∥β或m?β,不正確,
故選D.
點評 本題考查的知識點是空間直線與平面位置關(guān)系的判斷,熟練掌握直線與平面之間位置關(guān)系的判定定理,性質(zhì)定理,及定義和空間特征是解答此類問題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 一條射線 | B. | 兩條射線 | C. | 雙曲線的一支 | D. | 拋物線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<b<c | B. | b<c<a | C. | c<b<a | D. | c<a<b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -i | B. | i | C. | 1+i | D. | 1-i |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com