A. | $\frac{y^2}{3}-{x^2}=1$ | B. | $\frac{x^2}{4}-\frac{y^2}{12}=1$ | C. | ${y^2}-\frac{x^2}{3}=1$ | D. | $\frac{x^2}{12}-\frac{y^2}{4}=1$ |
分析 根據(jù)題意,由拋物線的方程計(jì)算可得其焦點(diǎn)坐標(biāo),結(jié)合題意可得雙曲線$\frac{x^2}{m}+\frac{y^2}{n}=1$中有c=2,結(jié)合離心率公式可得e=$\frac{c}{a}$=$\frac{2}{\sqrt{n}}$=$\frac{2\sqrt{3}}{3}$,解可得n的值,由雙曲線的幾何性質(zhì)計(jì)算可得m的值,將m、n的值代入雙曲線的方程即可得答案.
解答 解:根據(jù)題意,拋物線的方程為x2=8y,則其焦點(diǎn)為(0,2),
又由雙曲線$\frac{x^2}{m}+\frac{y^2}{n}=1$的一個(gè)焦點(diǎn)與拋物線x2=8y的焦點(diǎn)相同,
則有m<0而n>0,且c=2;
雙曲線$\frac{x^2}{m}+\frac{y^2}{n}=1$的離心率為$\frac{{2\sqrt{3}}}{3}$,則有e=$\frac{c}{a}$=$\frac{2}{\sqrt{n}}$=$\frac{2\sqrt{3}}{3}$,
解可得n=3,
又由c2=n+(-m)=4;
則m=-1;
故雙曲線的方程為:$\frac{{y}^{2}}{3}$-x2=1;
故選:A.
點(diǎn)評(píng) 本題考查雙曲線的幾何性質(zhì),注意分析雙曲線焦點(diǎn)的位置.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $({1,\sqrt{2}})$ | B. | $({1,\sqrt{3}})$ | C. | (1,2) | D. | (2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 8 | B. | 7 | C. | 6 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4,4 | B. | 5,4 | C. | 4,5 | D. | 5,5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com