12.已知m∈R,“方程ex+m-1=0有解”是“函數(shù)y=logmx在區(qū)間(0,+∞)為減函數(shù)”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 方程ex+m-1=0有解,則m=1-ex<1.函數(shù)y=logmx在區(qū)間(0,+∞)為減函數(shù),則0<m<1.即可判斷出結(jié)論.

解答 解:方程ex+m-1=0有解,則m=1-ex<1.
函數(shù)y=logmx在區(qū)間(0,+∞)為減函數(shù),則0<m<1.
“方程ex+m-1=0有解”是“函數(shù)y=logmx在區(qū)間(0,+∞)為減函數(shù)”的必要不充分條件.
故選:B.

點評 本題考查了函數(shù)的單調(diào)性、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

11.設x,y滿足約束條件$\left\{\begin{array}{l}x≥y\\ y≥4x-3\\ x≥0,y≥0\end{array}\right.$,若目標函數(shù)2z=2x+ny(n>0),z的最大值為2,則$y=tan({nx+\frac{π}{6}})$的圖象向右平移$\frac{π}{6}$后的表達式為( 。
A.$y=tan({2x+\frac{π}{6}})$B.$y=cot({x-\frac{π}{6}})$C.$y=tan({2x-\frac{π}{6}})$D.y=tan2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.數(shù)列{an}中,a2n=a2n-1+(-1)n,a2n+1=a2n+n,a1=1,則a20=46.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知x,y滿足約束條件$\left\{\begin{array}{l}{x-y+6≥0}\\{x≤3}\\{x+y+k≥0}\end{array}\right.$,且z=2x+4y的最小值為2,則常數(shù)k=(  )
A.2B.-2C.6D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.拋物線x2=4y的焦點為F,過點(0,-1)作直線交拋物線于不同兩點A,B,以AF,BF為鄰邊作平行四邊形FARB,求頂點R的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知f(x)=ax2+x-a,a∈R
(Ⅰ)若a=1,解不等式f(x)>1
(Ⅱ)若a<0,解不等式f(x)>1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.如圖,在正方體ABCD-A1B1C1D1中,E,F(xiàn),G,H分別為AA1,AB,BB1,B1C1的中點,則異面直線EF與GH所成的角等于( 。
A.45°B.60°C.90°D.120°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.設命題p:f(x)=x2+(2m-2)x+3在區(qū)間(-∞,0)上是減函數(shù);命題q:“不等式x2-4x+1-m≤0無解”.如果命題p∨q為真,命題p∧q為假,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.若$tanθ=-\frac{1}{3},θ∈(\frac{π}{2},π),則cos2θ$=( 。
A.$-\frac{4}{5}$B.-$\frac{1}{5}$C.$\frac{1}{5}$D.$\frac{4}{5}$

查看答案和解析>>

同步練習冊答案