【題目】已知函數(shù),其導(dǎo)函數(shù)為.

1)討論函數(shù)在定義域內(nèi)的單調(diào)性;

2)已知,設(shè)函數(shù).

①證明:函數(shù)上存在唯一極值點;

②在①的條件下,當時,求的范圍.

【答案】1)減區(qū)間為;增區(qū)間為;(2)①證明見解析;②.

【解析】

1)求導(dǎo)后發(fā)現(xiàn)的正負由決定,利用導(dǎo)數(shù)研究單調(diào)遞增,又,從而逐層回推,得到的單調(diào)性;

2)①求得,令,利用導(dǎo)數(shù)研究,即單調(diào)性,利用零點存在定理得到存在,使得,由此得到的單調(diào)性,從而證明結(jié)論;

②先求得,,利用導(dǎo)數(shù)研究單調(diào)性,從而得到的取值范圍.

解:(1的定義域為:,

,

設(shè),則

時,;,,

所以,單調(diào)遞增,又,

所以,

所以,的減區(qū)間為,增區(qū)間為;

2)①,

,令,則

,

,,

所以,遞減;遞增.

即:遞減;遞增.

所以,存在,使得,

從而有,遞減;遞增,在定義域內(nèi)有唯一的零點.

②證明:,

遞增,

所以,,

,

設(shè),

遞減,則的取值范圍為:.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中.

1)討論函數(shù)的單調(diào)性;

2)若函數(shù)存在兩個極值點,(其中),且的取值范圍為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中動圓P與圓外切,與圓內(nèi)切.

1)求動圓圓心P的軌跡方程;

2)直線l過點且與動圓圓心P的軌跡交于A、B兩點.是否存在面積的最大值,若存在,求出的面積的最大值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線C1的參數(shù)方程為為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為

1)求曲線C1的普通方程和C2的直角坐標方程;

2)已知曲線C3的極坐標方程為,點A是曲線C3C1的交點,點B是曲線C3C2的交點,AB均異于原點O,且,求實數(shù)α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),的導(dǎo)函數(shù).

1)證明:當時,

2)若是函數(shù)內(nèi)零點,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【選修4-4:坐標系與參數(shù)方程】

在直角坐標系中,以原點為極點,軸的正半軸為極軸建立極坐標系,直線的參數(shù)方程為為參數(shù)),曲線的極坐標方程為.

(1)寫出直線的普通方程和曲線的直角坐標方程;

(2)若點的坐標為,直線與曲線交于,兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《算法統(tǒng)宗》是中國古代數(shù)學名著,由明代數(shù)學家程大位所著,該作完善了珠算口訣,確立了算盤用法,完成了由籌算到珠算的徹底轉(zhuǎn)變,該作中有題為“李白沽酒”“李白街上走,提壺去買酒。遇店加一倍,見花喝一斗,三遇店和花,喝光壺中酒。借問此壺中,原有多少酒?”,如圖為該問題的程序框圖,若輸出的值為0,則開始輸入的值為(

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標中,直線的參數(shù)方程為為參數(shù),.在以坐標原點為極點、x軸的非負半軸為極軸的極坐標系中,曲線的極坐標方程為.

1)若點在直線上,求直線的極坐標方程;

2)已知,若點在直線上,點在曲線上,且的最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,都是邊長為2的等邊三角形,為等腰直角三角形,.

1)證明:;

2)若的中點,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

同步練習冊答案