9.下列命題中,真命題的個數(shù)是( 。
$\begin{array}{l}(1)若a>b,則ac>bc.(2)若a>b,則a{c^2}>b{c^2}.\\(3)若a{c^2}>b{c^2},則a>b.(4)若a>b,則{e^a}>{e^b}.\end{array}$.
A.1B.2C.3D.4

分析 舉例說明命題(1)、(2)不成立;由不等式的性質(zhì)判斷(3)是真命題,根據(jù)指數(shù)函數(shù)的單調(diào)性判斷(4)是真命題.

解答 解:(1)若a>b,則ac>bc是假命題,如c≤0時不成立;
(2)若a>b,則ac2>bc2是假命題,如c=0時不成立;
(3)若ac2>bc2,則a>b是真命題,因為這里c2>0;
(4)若a>b,則ea>eb是真命題,根據(jù)指數(shù)函數(shù)的單調(diào)性可以判斷.
綜上,正確的命題是(3)(4),有2個.
故選:B.

點評 本題考查了四種命題已經(jīng)命題真假的判斷問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.長春市的“名師云課”活動自開展以來獲得廣大家長和學(xué)子的高度贊譽,在我市推出的第二季名師云課中,數(shù)學(xué)學(xué)科共計推出36節(jié)云課,為了更好地將課程內(nèi)容呈現(xiàn)給廣大學(xué)子,現(xiàn)對某一時段云課的點擊量進行統(tǒng)計:
點擊量[0,1000](1000,3000](3000,+∞)
節(jié)數(shù)61812
(Ⅰ)現(xiàn)從36節(jié)云課中采用分層抽樣的方式選出6節(jié),求選出的點擊量超過3000的節(jié)數(shù).
(Ⅱ)為了更好地搭建云課平臺,現(xiàn)將云課進行剪輯,若點擊量在區(qū)間[0,1000]內(nèi),則需要花費40分鐘進行剪輯,若點擊量在區(qū)間(1000,3000]內(nèi),則需要花費20分鐘進行剪輯,點擊量超過3000,則不需要剪輯,現(xiàn)從(Ⅰ)中選出的6節(jié)課中任意取出2節(jié)課進行剪輯,求剪輯時間為40分鐘的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.圓心角為1弧度半徑為2的扇形的面積為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合M={x∈N|x2-3x<4},N={x||x|<2},則M∩N=( 。
A.{x|-2≤x<1}B.{x|-2<x<1}C.{0}D.{0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.為了保護環(huán)境,發(fā)展低碳經(jīng)濟,某單位在國家科研部門的支持下,進行技術(shù)攻關(guān),新上了把二氧化碳處理轉(zhuǎn)化為一種可利用的化工產(chǎn)品的項目,經(jīng)測算,該項目月處理成本y(元)與月處理量x(噸)之間的函數(shù)關(guān)系可近似地表示為y=$\left\{\begin{array}{l}{\frac{1}{3}{x}^{3}-80{x}^{2}+5040x,x∈[120,144)}\\{\frac{1}{2}{x}^{2}-200x+80000,x∈[144,500]}\end{array}\right.$且每處理一噸二氧化碳得到可利用的化工產(chǎn)品價值為200元,若該項目不獲利,國家將給予補償.
(1)當(dāng)x∈[200,300]時,判斷該項目能否獲利?如果獲利,求出最大利潤;如果不獲利,則國家每月至少需要補貼多少元才能使該項目不虧損?
(2)該項目每月處理量為多少噸時,才能使每噸的平均處理成本最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知x與y之間的一組數(shù)據(jù):
x1234
ym3.24.87.5
若y關(guān)于x的線性回歸方程為$\widehat{y}$=2.1x-1.25,則m的值為0.5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)單位向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的夾角為$\frac{2π}{3}$,$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$,$\overrightarrow$=-3$\overrightarrow{{e}_{2}}$,則$\overrightarrow{a}$在$\overrightarrow$方向上的投影為( 。
A.-$\frac{3\sqrt{3}}{2}$B.-$\frac{3}{2}$C.$\frac{3}{2}$D.$\frac{3\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若函數(shù)f(x)=x2+2(a-1)x+2在區(qū)間(-∞,4]內(nèi)遞減,那么實數(shù)a的取值范圍為( 。
A.a≤-3B.a≥-3C.a≤5D.a≥3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.定義:如果函數(shù)f(x)在[m,n]上存在x1,x2(m<x1<x2<n)滿足f′(x1)=$\frac{f(n)-f(m)}{n-m}$,f′(x2)=$\frac{f(n)-f(m)}{n-m}$,則稱函數(shù)f(x)是[m,n]上的“雙中值函數(shù)”.已知函數(shù)f(x)=x3-x2+a是[0,a]上“雙中值函數(shù)”,則實數(shù)a的取值范圍是(  )
A.($\frac{1}{3}$,$\frac{1}{2}$)B.($\frac{1}{2}$,3)C.($\frac{1}{2}$,1)D.($\frac{1}{3}$,1)

查看答案和解析>>

同步練習(xí)冊答案