20.以下莖葉圖記錄了甲、乙兩個籃球隊在3次不同比賽中的得分情況.乙隊記錄中有一個數(shù)字模糊,無法確認(rèn),假設(shè)這個數(shù)字具有隨機(jī)性,并在圖中以m表示.那么在3次比賽中,乙隊平均得分超過甲隊平均得分的概率是( 。
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$\frac{7}{10}$D.$\frac{9}{10}$

分析 由莖葉圖中的數(shù)據(jù),求出甲、乙二人的平均成績,
列不等式求出m的取值集合,再計算所求的概率值.

解答 解:由莖葉圖知,
甲的平均成績?yōu)?\frac{1}{3}$×(78+82+83)=81;
乙的平均成績?yōu)?\frac{1}{3}$×(80+83+80+m)=81+$\frac{m}{3}$,
又∵81<81+$\frac{m}{3}$,
∴m>0,
又m∈N,
∴m的可能取值集合為{1,2,3,4,5,6,7,8,9}.
∴乙隊平均得分超過甲隊平均得分的概率是P=$\frac{9}{10}$.
故選:D.

點評 本題考查了莖葉圖與平均數(shù)的應(yīng)用問題,也考查了概率的計算問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在等腰梯形ABCD中,已知AB∥DC,AB=2,BC=1,∠ABC=60°,動點E和F分別在線段BC和DC上,且$\overrightarrow{BE}=λ\overrightarrow{BC},\overrightarrow{DF}=\frac{1}{9λ}\overrightarrow{DC}$,則$\overrightarrow{AE}•\overrightarrow{AF}$的最小值為( 。
A.$\frac{27}{18}$B.$\frac{29}{18}$C.$\frac{17}{18}$D.$\frac{13}{18}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)a∈R,若函數(shù)y=ex+ax,x∈R有小于零的極值點,則實數(shù)a的取值范圍是(  )
A.(-∞,-1)B.(-1,+∞)C.(-1,0)D.(-∞,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.從數(shù)字0,1,2,3,4,5中任選3個數(shù)字,可組成沒有重復(fù)數(shù)字的三位數(shù)共有(  )
A.60B.90C.100D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某市居民自來水收費標(biāo)準(zhǔn)如下:每戶每月用水不超過4噸時,每噸為1.80元,當(dāng)用水超過4噸時,超過部分每噸3.00元.某月甲、乙兩戶共交水費y元,已知甲、乙兩用戶該月用水量分別為5x,3x噸.
(Ⅰ) 若x=1,求該月甲、乙兩戶的水費;
(Ⅱ) 求y關(guān)于x的函數(shù);
(Ⅲ) 若甲、乙兩戶該月共交水費26.4元,分別求出甲、乙兩戶該月的用水量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)y=Asin(2x+φ)(A>0,|φ|<π)在一個周期內(nèi)的圖象如圖所示,則此函數(shù)的解析式為(  )
A.y=2sin(2x+$\frac{π}{3}$)B.y=2sin(2x-$\frac{2π}{3}$)C.y=2sin(2x-$\frac{π}{3}$)D.y=2sin(2x+$\frac{2π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.為了解喜好體育運動是否與性別有關(guān),某報記者隨機(jī)采訪50個路人,將調(diào)查情況進(jìn)行整理后制成下表:
 年齡(歲)[15,25)[25,35)
 
[35,45)
 15
[45,55)
 
[55,65)
 
[65,75)
 
 頻數(shù) 510  8 10 5 5
 喜好人數(shù) 4 6  6 3
(1)在調(diào)查的結(jié)果中,喜好體育運動的女性有10人,不喜好體育運動的男性有5人,請將下面的2×2列聯(lián)表補(bǔ)充完整,并判斷能否在犯錯誤的概率不超過0.005的前提下認(rèn)為喜好體育運動與性別有關(guān)?說明你的理由;
  喜好體育運動 不喜好體育運動合計 
 男生  5 
 女生 10  
 合計   50
(2)若從年齡在[15,25),[25,35)的被調(diào)查者中各隨機(jī)選取兩人進(jìn)行追蹤調(diào)查,記選中的4人中不喜好體育運動的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
下面的臨界值表供參考:
 P(K2≥k)0.15 0.10 0.05  0.025 0.010 0.005 0.001
2.072 2.706  3.841 5.024 6.6357.879  10.828
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知點P(x,y)是圓x2+y2=2y上的動點,
(1)求2x+y的取值范圍;
(2)若x+y+a≥0有解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知公比為正數(shù)的等比數(shù)列{an}(n∈N*),首項a1=3,前n項和為Sn,且S3+a3、S5+a5、S4+a4成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=$\frac{{n{a_n}}}{6},求數(shù)列\(zhòng)left\{{b_n}\right\}的前n項和{T_n}$.

查看答案和解析>>

同步練習(xí)冊答案