7.某幾何體的三視圖如圖所示,在該幾何體的體積是(  )
A.$\frac{10}{3}$B.$\frac{20}{3}$C.$\frac{2}{5}$D.$\frac{4}{5}$

分析 如圖所示,該幾何體為四棱錐,其中PA⊥底面ABCD,作BE⊥CD,垂足為E點(diǎn),底面由直角梯形ABED與直角三角形BCE組成.

解答 解:如圖所示,該幾何體為四棱錐,其中PA⊥底面ABCD,作BE⊥CD,垂足為E點(diǎn),底面由直角梯形ABED與直角三角形BCE組成.
則V=$\frac{1}{3}×4×(\frac{1+2}{2}×2+\frac{1}{2}×2×2)$
=$\frac{20}{3}$.
故選:B.

點(diǎn)評(píng) 本題考查了四棱錐的三視圖及其體積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)$f(x)=a-\frac{1}{|x|}(a≠0)$.
(1)若f(x)<2x在(1,+∞)上恒成立,求實(shí)數(shù)a的取值范圍;
(2)若函數(shù)y=f(x)在[m,n]上的值域是[m,n],求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知?x0∈R使不等式|x-1|-|x-2|≥t成立.
(1)求滿(mǎn)足條件的實(shí)數(shù)t的集合T;
(2)若m>1,n>1,對(duì)?t∈T,不等式log3m•log3n≥t恒成立,求mn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.命題“?x∈[1,2],x2-3x+2≤0”的否定是( 。
A.?x∈[1,2],x2-3x+2>0B.?x∉[1,2],x2-3x+2>0
C.$?{x_0}∈[{1,2}],{x_0}^2-3{x_0}+2>0$D.$?{x_0}∉[{1,2}],{x_0}^2-3{x_0}+2>0$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知數(shù)列{an}的前n項(xiàng)和為${S_n},{a_1}=2,{a_{n+1}}-{S_n}=2({n∈{N^*}})$.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log2an,cn=an•bn,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.如圖,已知直線l:y=k(x+1)(k>0)與拋物線C:y2=4x相交于A、B兩點(diǎn),點(diǎn)F為拋物線焦點(diǎn),且A、B兩點(diǎn)在拋物線C準(zhǔn)線上的射影分別是M、N,若|AM|=2|BN|,則k的值是$\frac{2}{3}\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若B=$\frac{π}{2}$,a=$\sqrt{6}$,sin2B=2sinAsinC,則△ABC的面積S△ABC=( 。
A.$\frac{3}{2}$B.3C.$\sqrt{6}$D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知數(shù)列{an}為等差數(shù)列,且a1≥1,a2≤5,a5≥8,設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,S15的最大值為M,最小值為m,則M+m=( 。
A.500B.600C.700D.800

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知數(shù)列{an},滿(mǎn)足a1=1,${a_{n+1}}=\frac{{3{a_n}}}{{2{a_n}+3}}$,n∈N*
(Ⅰ)求證:數(shù)列$\left\{{\frac{1}{a_n}}\right\}$為等差數(shù)列;
(Ⅱ)設(shè)${T_{2n}}=\frac{1}{{{a_1}{a_2}}}-\frac{1}{{{a_2}{a_3}}}+\frac{1}{{{a_3}{a_4}}}-\frac{1}{{{a_4}{a_5}}}+…+\frac{1}{{{a_{2n-1}}{a_{2n}}}}-\frac{1}{{{a_{2n}}{a_{2n+1}}}}$,求T2n

查看答案和解析>>

同步練習(xí)冊(cè)答案