12.如圖,已知直線l:y=k(x+1)(k>0)與拋物線C:y2=4x相交于A、B兩點(diǎn),點(diǎn)F為拋物線焦點(diǎn),且A、B兩點(diǎn)在拋物線C準(zhǔn)線上的射影分別是M、N,若|AM|=2|BN|,則k的值是$\frac{2}{3}\sqrt{2}$.

分析 直線y=k(x+1)(k>0)恒過定點(diǎn)P(-1,0),由此推導(dǎo)出|OB|=$\frac{1}{2}$|AF|,由此能求出點(diǎn)B的坐標(biāo),從而能求出k的值.

解答 解:設(shè)拋物線C:y2=4x的準(zhǔn)線為l:x=-1
直線y=k(x+1)(k>0)恒過定點(diǎn)P(-1,0)
如圖過A、B分別作AM⊥l于M,BN⊥l于N,
由|FA|=2|FB|,則|AM|=2|BN|,
點(diǎn)B為AP的中點(diǎn)、連接OB,
則|OB|=$\frac{1}{2}$|AF|,
∴|OB|=|BF|,點(diǎn)B的橫坐標(biāo)為$\frac{1}{2}$,
∴點(diǎn)B的坐標(biāo)為B($\frac{1}{2}$,$\sqrt{2}$),
把B($\frac{1}{2}$,$\sqrt{2}$)代入直線l:y=k(x+1)(k>0),
解得k=$\frac{2}{3}\sqrt{2}$.
故答案為$\frac{2}{3}\sqrt{2}$.

點(diǎn)評(píng) 本題考查直線與圓錐曲線中參數(shù)的求法,考查拋物線的性質(zhì),是中檔題,解題時(shí)要注意等價(jià)轉(zhuǎn)化思想的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,正方體ABCD-A1B1C1D1的棱長為1,點(diǎn)M∈AB1,N∈BC1,且AM=BN≠$\sqrt{2}$,有以下四個(gè)結(jié)論:①AA1⊥MN;②AB∥MN;③MN∥平面A1B1C1D1;④MN與A1C1一定是異面直線.其中正確命題的序號(hào)是( 。
A.①③B.②③C.①④D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.左、右焦點(diǎn)分別為F1、F2的橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過點(diǎn)Q(0,$\sqrt{3}$),P為橢圓上一點(diǎn),△PF1F2的重心為G,內(nèi)心為I,IG∥F1F2
(1)求橢圓C的方程;
(2)M為直線x-y=4上一點(diǎn),過點(diǎn)M作橢圓C的兩條切線MA、MB,A、B為切點(diǎn),問直線AB是否過定點(diǎn)?若過定點(diǎn),求出定點(diǎn)的坐標(biāo);若不過定點(diǎn),請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知等差數(shù)列{an}滿足:a2=2,Sn-Sn-3=54(n>3),Sn=100,則n=( 。
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.某幾何體的三視圖如圖所示,在該幾何體的體積是( 。
A.$\frac{10}{3}$B.$\frac{20}{3}$C.$\frac{2}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知甲、乙兩組數(shù)據(jù)的莖葉圖如圖所示,若它們的中位數(shù)相同,則甲組數(shù)據(jù)的平均數(shù)為(  )
A.32B.33C.34D.35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.以雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)上一點(diǎn)M為圓心作圓,該圓與x軸相切于C的一個(gè)焦點(diǎn)F,與y軸交于P,Q兩點(diǎn),若△MPQ為正三角形,則C的離心率等于(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知數(shù)列{an}、{bn}、{cn},以下兩個(gè)命題:
①若{an+bn}、{bn+cn}、{an+cn}都是遞增數(shù)列,則{an}、{bn}、{cn}都是遞增數(shù)列;
②若{an+bn}、{bn+cn}、{an+cn}都是等差數(shù)列,則{an}、{bn}、{cn}都是等差數(shù)列;
下列判斷正確的是( 。
A.①②都是真命題B.①②都是假命題
C.①是真命題,②是假命題D.①是假命題,②是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)P={x|x<4},Q={x|x2<4},則( 。
A.P⊆QB.Q⊆PC.P⊆∁RQD.Q⊆∁RP

查看答案和解析>>

同步練習(xí)冊(cè)答案