1.已知數(shù)列{an}、{bn}、{cn},以下兩個命題:
①若{an+bn}、{bn+cn}、{an+cn}都是遞增數(shù)列,則{an}、{bn}、{cn}都是遞增數(shù)列;
②若{an+bn}、{bn+cn}、{an+cn}都是等差數(shù)列,則{an}、{bn}、{cn}都是等差數(shù)列;
下列判斷正確的是( 。
A.①②都是真命題B.①②都是假命題
C.①是真命題,②是假命題D.①是假命題,②是真命題

分析 對于①不妨設(shè)an=2n,bn=3n、cn=sinn,滿足{an+bn}、{bn+cn}、{an+cn}都是遞增數(shù)列,但是不滿足cn=sinn是遞增數(shù)列,
對于②根據(jù)等差數(shù)列的性質(zhì)和定義即可判斷.

解答 解:對于①不妨設(shè)an=2n,bn=3n、cn=sinn,
∴{an+bn}、{bn+cn}、{an+cn}都是遞增數(shù)列,但cn=sinn不是遞增數(shù)列,故為假命題,
對于②{an+bn}、{bn+cn}、{an+cn}都是等差數(shù)列,不妨設(shè)公差為分別為a,b,c,
∴an+bn-an-1-bn-1=a,bn+cn-bn-1-cn-1=b,an+cn-an-1-cn-1=c,
設(shè){an},{bn}、{cn}的公差為x,y,z,
∴$\left\{\begin{array}{l}{x+y=a}\\{y+z=b}\\{z+x=c}\end{array}\right.$
則x=$\frac{a-b+c}{2}$,y=$\frac{a+b-c}{2}$,z=$\frac{b+c-a}{2}$,
故若{an+bn}、{bn+cn}、{an+cn}都是等差數(shù)列,則{an}、{bn}、{cn}都是等差數(shù)列,故為真命題,
故選:D

點評 本題考查了等差數(shù)列的性質(zhì)和定義,以及命題的真假,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)SA為球的直徑,B、C、D三點在球面上,且SA⊥面BCD,三角形BCD的面積為3,VS-BCD=3VA-BCD=3,則球的表面積為( 。
A.16πB.64πC.$\frac{32}{3}$πD.32π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如圖,已知直線l:y=k(x+1)(k>0)與拋物線C:y2=4x相交于A、B兩點,點F為拋物線焦點,且A、B兩點在拋物線C準(zhǔn)線上的射影分別是M、N,若|AM|=2|BN|,則k的值是$\frac{2}{3}\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合A={x||x-1|≤2},B={x|x=2n-1,n∈Z},則A∩B=( 。
A.{1,3}B.{0,2}C.{1}D.{-1,1,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知數(shù)列{an}為等差數(shù)列,且a1≥1,a2≤5,a5≥8,設(shè)數(shù)列{an}的前n項和為Sn,S15的最大值為M,最小值為m,則M+m=( 。
A.500B.600C.700D.800

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知$\overrightarrow{a}$、$\overrightarrow$是平面向量,如果|$\overrightarrow{a}$|=3,|$\overrightarrow$|=4,|$\overrightarrow{a}$+$\overrightarrow$|=2,那么|$\overrightarrow{a}$-$\overrightarrow$|=( 。
A.$\sqrt{46}$B.7C.5D.$\sqrt{21}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.某校1000名高三學(xué)生參加了一次數(shù)學(xué)考試,這次考試考生的分?jǐn)?shù)服從正態(tài)分布N(90,σ2),若分?jǐn)?shù)在(70,110]內(nèi)的概率為0.7,估計這次考試分?jǐn)?shù)不超過70分的人數(shù)為325人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.某校高三年級有男生220人,學(xué)籍編號1,2,…,220;女生380人,學(xué)籍編號221,222,…,600.為了解學(xué)生學(xué)習(xí)的心理狀態(tài),按學(xué)籍編號采用系統(tǒng)抽樣的方法從這600名學(xué)生中抽取10人進(jìn)行問卷調(diào)查(第一組采用簡單隨機抽樣,抽到的號碼為10),然后再從這10位學(xué)生中隨機抽取3人座談,則3人中既有男生又有女生的概率是( 。
A.$\frac{1}{5}$B.$\frac{3}{10}$C.$\frac{7}{10}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.“|x-1|<2成立”是“x(x-3)<0成立”的( 。
A.充分必要條件B.充分而不必要條件
C.必要而不充分條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案