8.計算:${∫}_{1}^{2}$(ex-$\frac{1}{x}$)dx=e2-e-ln2.

分析 根據(jù)定積分的法則計算即可

解答 解:${∫}_{1}^{2}$(ex-$\frac{1}{x}$)dx=(ex-lnx)${|}_{1}^{2}$=e2-e-ln2,
故答案為:e2-e-ln2.

點評 本題考查了定積分的計算,關(guān)鍵是求出原函數(shù),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知角α的頂點在原點,始邊與x軸正半軸重合,點P(-4,3)是角α終邊上一點,則sinα+2cosα=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知集合A={x|1<x≤3},B={x|x<4,x∈Z},則A∩B=( 。
A.(2,3)B.[2,3]C.{2,3}D.{2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.對于函數(shù)f(x)定義域中任意的x1,x2(x1≠x2),有如下結(jié)論:
①f(x1+x2)=f(x1)•f(x2);
②f(x1•x2)=f(x1)•f(x2);
③f($\frac{{x}_{1}{+x}_{2}}{2}$)>$\frac{f{(x}_{1})+f{(x}_{2})}{2}$;
④$\frac{f{(x}_{1})-f{(x}_{2})}{{x}_{1}{-x}_{2}}$>0;
⑤當(dāng)1<x1<x2時$\frac{f{(x}_{1})}{{x}_{1}-1}>\frac{f{(x}_{2})}{{x}_{2}-1}$;
當(dāng)f(x)=${(\frac{3}{2})}^{x}$時,上述結(jié)論中正確結(jié)論的序號是①④⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若△PAD所在平面與矩形ABCD所在平面互相垂直,PA=PD=AB=2,∠APD=60°,若點P,A,B,C,D都在同一個球面上,則此球的表面積為( 。
A.$\frac{25}{3}$πB.$\frac{28}{3}$πC.$\frac{28\sqrt{21}}{27}$πD.$\frac{25\sqrt{21}}{27}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.將函數(shù)f(x)=sin2x+$\sqrt{3}$cos2x圖象上所有點向右平移$\frac{π}{6}$個單位長度,得到函數(shù)g (x)的圖象,則g(x)圖象的一個對稱中心是( 。
A.($\frac{π}{3}$,0)B.( $\frac{π}{4}$,0)C.(-$\frac{π}{12}$,0)D.($\frac{π}{2}$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在△ABC中,CA=2,CB=1,CD是AB邊上的中線.
(Ⅰ)求證:sin∠BCD=2sin∠ACD;
(Ⅱ)若∠ACD=30°,求AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.集合P={x||x|>1},Q={x|y=$\sqrt{4-{x}^{2}}$},則P∩Q=(  )
A.[-2,-1]B.(1,2)C.[-2,-1)∪(1,2]D.[-2,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知直線l過定點P(1,1),且傾斜角為$\frac{π}{4}$,以坐標(biāo)原點為極點,x軸的正半軸為極軸的坐標(biāo)系中,曲線C的極坐標(biāo)方程為$ρ=2cosθ+\frac{3}{ρ}$.
(1)求曲線C的直角坐標(biāo)方程與直線l的參數(shù)方程;
(2)若直線l與曲線C相交于不同的兩點A,B,求|AB|及|PA|•|PB|的值.

查看答案和解析>>

同步練習(xí)冊答案