分析 (1)由已知及正弦定理可得sinB=$\frac{\sqrt{2}}{2}$,結(jié)合范圍0<B<π,可得B的值.
(2)利用三角形面積公式可求c,進(jìn)而利用余弦定理可求b的值,分類討論,即可判定三角形的形狀.
解答 解:(1)由$c=\sqrt{2}bsinC$,可得$\frac{c}{sinC}=\frac{{\frac{{\sqrt{2}}}{2}}}$.
根據(jù)正弦定理可得:sinB=$\frac{\sqrt{2}}{2}$,
由于0<B<π,可得:B=$\frac{π}{4}$或$\frac{3π}{4}$,
(2)因?yàn)椤鰽BC的面積為9=$\frac{1}{2}$acsinB,a=6,sinB=$\frac{\sqrt{2}}{2}$,
所以$\frac{1}{2}×6c×\frac{{\sqrt{2}}}{2}=9$.
解得$c=3\sqrt{2}$.
由余弦定理可知${b^2}={a^2}+{c^2}-2accosB=54-36\sqrt{2}cosB$,
由$cosB=±\frac{{\sqrt{2}}}{2}$得b2=18或b2=90,
所以$b=3\sqrt{2}$或$b=3\sqrt{10}$.
當(dāng)$b=3\sqrt{2}$時(shí),此時(shí)$b=c=3\sqrt{2},a=6$,△ABC為等腰直角三角形;
當(dāng)$b=3\sqrt{10}$時(shí),此時(shí)$c=3\sqrt{2},a=6$,△ABC為鈍角三角形.
點(diǎn)評(píng) 本題主要考查了正弦定理,三角形面積公式,余弦定理在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想和分類討論思想,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 8 | C. | $\frac{24}{5}$ | D. | $\frac{36}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $-\sqrt{2}$ | B. | $\sqrt{2}$ | C. | $-\root{4}{2}$ | D. | $\root{4}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\sqrt{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $-\frac{10}{3}$<λ≤$\frac{9}{4}$ | B. | $-\frac{10}{3}$<λ<$\frac{9}{4}$ | C. | $-\frac{9}{4}$<λ≤$\frac{10}{3}$ | D. | $-\frac{9}{4}$<λ<$\frac{10}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 15 | B. | 16 | C. | 17 | D. | 18 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com