分析 作出不等式組對應的平面區(qū)域,利用z的幾何意義即可得到結(jié)論.
解答 解:由z=2x+y,得y=-2x+z,
作出不等式組對應的平面區(qū)域如圖:
由圖象可知當直線y=-2x+z過點C時,直線y=-2x+z的在y軸的截距最大,此時z最大,
由$\left\{\begin{array}{l}{x+y=3}\\{y=1}\end{array}\right.$,得$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$,即C(2,1),
此時z=2×2+1=5,
即最優(yōu)解為(2,1),z取得最大值5.
點評 本題主要考查線性規(guī)劃的應用,利用目標函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學思想是解決此類問題的基本方法.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 10 | B. | $\sqrt{10}$ | C. | 5 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 北偏東80°,20($\sqrt{6}$+$\sqrt{2}$) | B. | 北偏東65°,20($\sqrt{3}$+2) | C. | 北偏東65°,20($\sqrt{6}$+$\sqrt{2}$) | D. | 北偏東80°,20($\sqrt{3}$+2) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -2 | B. | 1 | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com