【題目】A,BC是三個事件,給出下列四個事件:

AB,C中至少有一個發(fā)生;

A,BC中最多有一個發(fā)生;

AB,C中至少有兩個發(fā)生;

A,BC最多有兩個發(fā)生;

其中相互為對立事件的是(

A.B.C.D.

【答案】B

【解析】

利用互斥事件、對立事件的定義直接求解.

解:,是三個事件,給出下列四個事件:

(Ⅰ),中至少有一個發(fā)生;

(Ⅱ),,中最多有一個發(fā)生;

(Ⅲ),中至少有兩個發(fā)生

(Ⅳ),最多有兩個發(fā)生;

中,Ⅰ和Ⅱ能同時發(fā)生,不是互斥事件,故中的兩個事件不能相互為對立事件;

中,Ⅱ和Ⅲ既不能同時發(fā)生,也不能同時不發(fā)生,故中的兩個事件相互為對立事件;

中,Ⅲ和Ⅳ能同時發(fā)生,不是互斥事件,故中的兩個事件不能相互為對立事件;

中,Ⅳ和Ⅰ能同時發(fā)生,不是互斥事件,故中的兩個事件不能相互為對立事件.

故選:

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中, 橢圓的中心在坐標原點,其右焦點為,且點 在橢圓上.

(1)求橢圓的方程;

(2)設橢圓的左、右頂點分別為是橢圓上異于的任意一點,直線交橢圓于另一點,直線交直線點, 求證:三點在同一條直線上

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場營銷人員進行某商品M市場營銷調(diào)查發(fā)現(xiàn),每回饋消費者一定的點數(shù),該商品每天的銷量就會發(fā)生一定的變化,經(jīng)過試點統(tǒng)計得到以如表:

反饋點數(shù)t

1

2

3

4

5

銷量百件

1

經(jīng)分析發(fā)現(xiàn),可用線性回歸模型擬合當?shù)卦撋唐蜂N量千件與返還點數(shù)t之間的相關(guān)關(guān)系請用最小二乘法求y關(guān)于t的線性回歸方程,并預測若返回6個點時該商品每天銷量;

若節(jié)日期間營銷部對商品進行新一輪調(diào)整已知某地擬購買該商品的消費群體十分龐大,經(jīng)營銷調(diào)研機構(gòu)對其中的200名消費者的返點數(shù)額的心理預期值進行了一個抽樣調(diào)查,得到如下一份頻數(shù)表:

返還點數(shù)預期值區(qū)間

百分比

頻數(shù)

20

60

60

30

20

10

求這200位擬購買該商品的消費者對返點點數(shù)的心理預期值X的樣本平均數(shù)及中位數(shù)的估計值同一區(qū)間的預期值可用該區(qū)間的中點值代替;估計值精確到;

將對返點點數(shù)的心理預期值在的消費者分別定義為“欲望緊縮型”消費者和“欲望膨脹型”消費者,現(xiàn)采用分層抽樣的方法從位于這兩個區(qū)間的30名消費者中隨機抽取6名,再從這6人中隨機抽取3名進行跟蹤調(diào)查,設抽出的3人中“欲望膨脹型”消費者的人數(shù)為隨機變量X,求X的分布列及數(shù)學期望.

參考公式及數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的兩焦點分別為,是橢圓在第一象限內(nèi)的一點,并滿足,過作傾斜角互補的兩直線、分別交橢圓于兩點.

1)求點坐標;

2)當直線經(jīng)過點時,求直線的方程;

3)求證直線的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義區(qū)間,的長度為.如果一個函數(shù)的所有單調(diào)遞增區(qū)間的長度之和為(其中,為自然對數(shù)的底數(shù)),那么稱這個函數(shù)為“函數(shù)”.下列四個命題:

①函數(shù)不是“函數(shù)”;

②函數(shù)是“函數(shù)”,且;

③函數(shù)是“函數(shù)”;

④函數(shù)是“函數(shù)”,且.

其中正確的命題的個數(shù)為( )

A. 4個B. 3個C. 2個D. 1個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合,且下列三個關(guān)系:,,中有且只有一個正確,則函數(shù)的值域是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題pxR,2mx2+mx-<0,命題q:2m+1>1.若“pq”為假,“pq”為真,則實數(shù)m的取值范圍是(  )

A. (-3,-1)∪[0,+∞) B. (-3,-1]∪[0,+∞)

C. (-3,-1)∪(0,+∞) D. (-3,-1]∪(0,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設不等式組所表示的平面區(qū)域為,其面積為.①若,則的值唯一;②若,則的值有2個;③若為三角形,則;④若為五邊形,則.以上命題中,真命題的個數(shù)是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中,錯誤的是(

A.一條直線和直線外一點確定一個平面

B.平行于同一平面的兩個不同平面平行

C.若直線不平行平面,則在平面內(nèi)不存在與平行的直線

D.如果平面不垂直平面,那么平面內(nèi)一定不存在直線垂直于平面

查看答案和解析>>

同步練習冊答案