【題目】下列命題中,錯誤的是( )
A.一條直線和直線外一點(diǎn)確定一個平面
B.平行于同一平面的兩個不同平面平行
C.若直線不平行平面,則在平面內(nèi)不存在與平行的直線
D.如果平面不垂直平面,那么平面內(nèi)一定不存在直線垂直于平面
【答案】C
【解析】
A.根據(jù)公理2進(jìn)行判斷;
B.根據(jù)面面平行的傳遞性進(jìn)行判斷;
C.考慮直線在平面內(nèi),由此進(jìn)行判斷;
D.利用反證法進(jìn)行證明.
A.不共線的三點(diǎn)可以唯一確定一個平面,而任意兩點(diǎn)可以確定一條直線,所以一條直線和直線外的一點(diǎn)可以唯一確定一個平面,故正確;
B.根據(jù)面面平行的傳遞性可知說法正確;
C.當(dāng)直線在平面內(nèi),顯然不成立,但是平面內(nèi)有無數(shù)條直線與平行,故錯誤;
D.假設(shè)平面內(nèi)存在直線垂直于平面,因為,,所以,所以假設(shè)不成立,故D正確.
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A,B,C是三個事件,給出下列四個事件:
(Ⅰ)A,B,C中至少有一個發(fā)生;
(Ⅱ)A,B,C中最多有一個發(fā)生;
(Ⅲ)A,B,C中至少有兩個發(fā)生;
(Ⅳ)A,B,C最多有兩個發(fā)生;
其中相互為對立事件的是( )
A.Ⅰ和ⅡB.Ⅱ和ⅢC.Ⅲ和ⅣD.Ⅳ和Ⅰ
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直三棱柱中,,,是的中點(diǎn),是上一點(diǎn),且.
(1)證明:平面;
(2)求二面角余弦值的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是兩條異面直線,直線與都垂直,則下列說法正確的是( )
A. 若平面,則
B. 若平面,則,
C. 存在平面,使得,,
D. 存在平面,使得,,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù),傾斜角),曲線C的參數(shù)方程為(為參數(shù),),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系。
(1)寫出曲線的普通方程和直線的極坐標(biāo)方程;
(2)若直線與曲線恰有一個公共點(diǎn),求點(diǎn)的極坐標(biāo)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐中,底面是邊長為1的菱形,,面,,、分別為、的中點(diǎn).
(1)證明:直線平面;
(2)求異面直線與所成角的大。
(3)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱中,,,,.
(1)求三棱柱的體積;
(2)若點(diǎn)M是棱AC的中點(diǎn),求直線與平面ABC所成的角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在邊長為3的菱形中,已知,且.將梯形沿直線折起,使平面,如圖2,分別是上的點(diǎn).
(1)若平面平面,求的長;
(2)是否存在點(diǎn),使直線與平面所成的角是?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的右焦點(diǎn)為,過點(diǎn)作與軸垂直的直線交橢圓于,兩點(diǎn)(點(diǎn)在第一象限),過橢圓的左頂點(diǎn)和上頂點(diǎn)的直線與直線交于點(diǎn),且滿足,設(shè)為坐標(biāo)原點(diǎn),若,,則該橢圓的離心率為( )
A. B. C. 或 D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com