11.如圖,設(shè)△ABC的三個(gè)內(nèi)角A,B,C對(duì)應(yīng)的三條邊分別為a,b,c,且角A,B,C成等差數(shù)列,a=2,線段AC的垂直平分線分別交線段AB,AC于D,E兩點(diǎn).
(1)若△BCD的面積為$\frac{{\sqrt{3}}}{3}$,求線段CD的長;
(2)若$CD=\sqrt{3}$,求角A的值.

分析 (1)先根據(jù)三角形的內(nèi)角A,B,C成等差數(shù)列,求出B的度數(shù),再根據(jù)三角的面積公式求出BD,再根據(jù)余弦定理即可求出,
(2)若$CD=\sqrt{3}$,求出∠BDC,即可求角A的值.

解答 解:(1)三角形的內(nèi)角A,B,C成等差數(shù)列,
則有2B=A+C.又A+B+C=180°,
∴B=60°,
∵△BCD的面積為$\frac{{\sqrt{3}}}{3}$,a=2
∴$\frac{1}{2}$BD•BC•sin60°=$\frac{{\sqrt{3}}}{3}$,
∴BD=$\frac{2}{3}$,
由余弦定理,CD2=BD2+BC2+2BD•BC•cos60°=$\frac{28}{9}$,
∴CD=$\frac{2\sqrt{7}}{3}$;
(2)△BCD中,$CD=\sqrt{3}$,$\frac{\sqrt{3}}{sin60°}=\frac{2}{sin∠BDC}$,∴sin∠BDC=1,
∴∠BDC=90°,∴CD⊥AB,
∵∠A=∠B=$\frac{π}{4}$.

點(diǎn)評(píng) 本題主要考查余弦定理三角形的面積公式以及等差數(shù)列的性質(zhì),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.元朝時(shí),著名數(shù)學(xué)家朱世杰在《四元玉鑒》中有一首詩:“我有一壺酒,攜著游春走,與店添一倍,逢友飲一斗,店友經(jīng)三處,沒了壺中酒,借問此壺中,當(dāng)原多少酒?”用程序框圖表達(dá)如圖所示,即最終輸出的x=0,問一開始輸入的x=( 。
A.$\frac{3}{4}$B.$\frac{7}{8}$C.$\frac{15}{16}$D.$\frac{31}{32}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.類比實(shí)數(shù)的運(yùn)算性質(zhì)猜想復(fù)數(shù)的運(yùn)算性質(zhì):
①“mn=nm”類比得到“z1z2=z2z1”;
②“|m•n|=|m|•|n|”類比得到“|z1•z2|=|z1|•|z2|”;
③“|x|=1⇒x=±1”類比得到“|z|=1⇒z=±1”
④“|x|2=x2”類比得到“|z|2=z2
以上的式子中,類比得到的結(jié)論正確的個(gè)數(shù)是(  )
A.1B.2C.3D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.觀察:$\sqrt{6}$+$\sqrt{15}$<2$\sqrt{11}$,$\sqrt{5.5}$+$\sqrt{15.5}$<2$\sqrt{11}$,$\sqrt{4-\sqrt{2}}$+$\sqrt{17+\sqrt{2}}$<2$\sqrt{11}$,…,對(duì)于任意的正實(shí)數(shù)a,b,使$\sqrt{a}$+$\sqrt$<2$\sqrt{11}$成立的一個(gè)條件可以是( 。
A.a+b=22B.a+b=21C.ab=20D.ab=21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖,已知正方體ABCD-A'B'C'D'的外接球的體積為$\frac{{\sqrt{3}}}{2}π$,將正方體割去部分后,剩余幾何體的三視圖如圖所示,則剩余幾何體的表面積為( 。
A.$\frac{9}{2}+\frac{{\sqrt{3}}}{2}$B.$3+\sqrt{3}$或$\frac{9}{2}+\frac{{\sqrt{3}}}{2}$C.$2+\sqrt{3}$D.$\frac{9}{2}+\frac{{\sqrt{3}}}{2}$或$2+\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知直線l參數(shù)方程為$\left\{\begin{array}{l}x=\sqrt{3}+tcosθ\\ y=tsinθ\end{array}\right.(t為參數(shù),0≤θ<π)$,曲線C的極坐標(biāo)方程為ρ2=$\frac{4}{1+{3sin}^{2}θ}$
(1)寫出曲線C的普通方程;
(2)若F1為曲線C的左焦點(diǎn),直線l與曲線C交于A,B兩點(diǎn),求|F1A|•|F1B|最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知空間三點(diǎn)A(-1,2,1),B(1,2,1),C(-1,6,4)
(1)求以向量$\overrightarrow{AB},\overrightarrow{AC}$為一組鄰邊的平行四邊形的面積S;
(2)若向量$\overrightarrow{a}$分別與向量$\overrightarrow{AB}$,$\overrightarrow{AC}$垂直,且|$\overrightarrow{a}$|=10,求向量$\overrightarrow{a}$的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知曲線f(x)=ax-1+1(a>1)恒過定點(diǎn)A,點(diǎn)A恰在雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線上,則雙曲線C的離心率為( 。
A.$\sqrt{5}$B.5C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某職稱晉級(jí)評(píng)定機(jī)構(gòu)對(duì)參加某次專業(yè)技術(shù)考試的100人的成績進(jìn)行了統(tǒng)計(jì),繪制了頻率分布直方圖(如圖所示).規(guī)定80分及以上者晉級(jí)成功,否則晉級(jí)失。M分100分).
(Ⅰ)求圖中a的值;
(Ⅱ)估計(jì)該次考試的平均分$\overline{x}$(同一組中的數(shù)據(jù)用該組的區(qū)間中點(diǎn)值代表);
(Ⅲ)根據(jù)已知條件完成下面2×2列聯(lián)表,并判斷能否有85%的把握認(rèn)為“晉級(jí)成功”與性別有關(guān)?
 晉級(jí)成功晉級(jí)失敗合計(jì)
16  
  50
合計(jì)   
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
P(K2≥k)0.400.250.150.100.050.025
k0.7801.3232.0722.7063.8415.024

查看答案和解析>>

同步練習(xí)冊(cè)答案