9.已知集合M={x|x2≤9},N={x|x≤1},則M∩N=( 。
A.[-3,1]B.[1,3]C.[-3,3]D.(-∞,1]

分析 求出關(guān)于M的不等式,求出M、N的交集即可.

解答 解:M={x|x2≤9}={x|-3≤x≤3},
N={x|x≤1},
則M∩N={x|-3≤x≤1},
故選:A.

點(diǎn)評(píng) 本題考查了集合的運(yùn)算,考查不等式問(wèn)題,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知數(shù)列{an}的前n項(xiàng)和為Sn,記bn=$\frac{{S}_{n+1}}{n}$.
(1)若{an}是首項(xiàng)為a、公差為d的等差數(shù)列,其中a,d均為正數(shù).
①當(dāng)3b1,2b2,b3成等差數(shù)列時(shí),求$\frac{a}yytssir$的值;
②求證:存在唯一的正整數(shù)n,使得an+1≤bn<an+2
(2)設(shè)數(shù)列{an}是公比為q(q>2)的等比數(shù)列,若存在r,t(r,t∈N*,r<t)使得$\frac{_{t}}{_{r}}$=$\frac{t+2}{r+2}$,求q的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{1}{2}$,右焦點(diǎn)為F2,點(diǎn)M在圓x2+y2=b2上,且M在第一象限,過(guò)M作圓x2+y2=b2的切線交橢圓于P,Q兩點(diǎn).若△PF2Q的周長(zhǎng)為4,則橢圓C的方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知Rt△ABC中,$∠A=\frac{π}{2}$,以B,C為焦點(diǎn)的雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)經(jīng)過(guò)點(diǎn)A,且與AB邊交于點(diǎn)D,若|AD|=2|BD|,則該雙曲線的離心率為( 。
A.$\frac{{\sqrt{10}}}{2}$B.$\sqrt{10}$C.$\frac{{\sqrt{5}}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.在棱長(zhǎng)為6的正方體ABCD-A1B1C1D1中,P、Q是直線DD1上的兩個(gè)動(dòng)點(diǎn).如果PQ=2,那么三棱錐P-BCQ的體積等于12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)函數(shù)f(x)=x2e-x,g(x)=xlnx.
(1)若F(x)=f(x)-g(x),證明:F(x)在(0,+∞)上存在唯一零點(diǎn);
(2)設(shè)函數(shù)h(x)=min{f(x),g(x)},(min{a,b}表示a,b中的較小值),若h(x)≤λ,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知sin2α<0,cosα<0,則下列各式一定成立的是( 。
A.sinα<0B.tanα>0C.sinα+cosα>0D.sinα-cosα>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.每年的4月23日為世界讀書(shū)日,為調(diào)查某高校學(xué)生(學(xué)生很多)的讀書(shū)情況,隨機(jī)抽取了男生,女生各20人組成的一個(gè)樣本,對(duì)他們的年閱讀量(單位:本)進(jìn)行了統(tǒng)計(jì),分析得到了男生年閱讀量的頻數(shù)分布表和女生年閱讀量的頻率分布直方圖.
男生年閱讀量的頻數(shù)分布表(年閱讀量均在區(qū)間[0,60]內(nèi))
本/年[0,10)[10,20)[20,30)[30,40)[40,50)[50,60]
頻數(shù)318422
(Ⅰ)根據(jù)女生年閱讀量的頻率分布直方圖估計(jì)該校女生年閱讀量的中位數(shù);
(Ⅱ)若年不小于40本為閱讀豐富,否則為閱讀不豐富,依據(jù)上述樣本研究年閱讀量與性別的關(guān)系,完成下列2×2列聯(lián)表,并判斷是否有99%的把握認(rèn)為閱讀豐富與性別有關(guān);
性別    閱讀量豐富不豐富合計(jì)
合計(jì)
(Ⅲ)在樣本中,從年閱讀量在[50,60]的學(xué)生中,隨機(jī)抽取2人參加全市的征文比賽,記這2人中男生人數(shù)為ξ,求ξ的分布列和期望.
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d
P(K2≥k00.0250.0100.005
k05.0246.6357.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知i是虛數(shù)單位,若復(fù)數(shù)$z=\frac{1+2i}{i}$,則復(fù)數(shù)|z|=( 。
A.$\sqrt{3}$B.$\sqrt{5}$C.3D.5

查看答案和解析>>

同步練習(xí)冊(cè)答案