分析 利用導數(shù)研究函數(shù)f(x)的單調性,即可得出最小值.再利用二項式定理的通項公式即可得出.
解答 解:f′(x)=1-$\frac{9}{{x}^{2}}$=$\frac{(x+3)(x-3)}{{x}^{2}}$,x∈[1,4].
令f′(x)=0,解得x=3.∴x∈[1,3]時,函數(shù)f(x)單調遞減;x∈(3,4]時,函數(shù)f(x)單調遞增.
∴x=3時,函數(shù)f(x)取得最小值6.
∴$(x-\frac{1}{x})^{6}$的通項公式:Tr+1=${∁}_{6}^{r}{x}^{6-r}(-\frac{1}{x})^{r}$=(-1)r${∁}_{6}^{r}$x6-2r,
令6-2r=2,解得r=2.
∴二項式(x-$\frac{1}{x}$)n展開式中x2的系數(shù)為${∁}_{6}^{2}$=15.
故答案為:15.
點評 本題考查了利用導數(shù)研究函數(shù)的單調性、二項式定理的性質及其應用,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | e2f(2)>e3f(3) | B. | e2f(2)<e3f(3) | C. | e2f(2)≥e3f(3) | D. | e2f(2)≤e3f(3) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3$\sqrt{5}$+2 | B. | 2$\sqrt{5}$ | C. | 6$\sqrt{5}$+4 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a<ab<ab2 | B. | ab<a<ab2 | C. | ab<ab2<a | D. | ab2<a<ab |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com