分析 令t=2-x>0,求得函數(shù)的定義域為(-∞,2),則f(x)=g(t)=${log}_{\frac{1}{2}}t$,本題即求函數(shù)t的減區(qū)間,利用一次函數(shù)的性質(zhì)得出結(jié)論.
解答 解:令t=2-x>0,求得x<2,故函數(shù)的定義域為(-∞,2),則f(x)=g(t)=${log}_{\frac{1}{2}}t$,
故本題即求函數(shù)t的減區(qū)間,而一次函數(shù)t在其定義域(-∞,2)內(nèi)單調(diào)遞減,
故答案為:(-∞,2).
點評 本題主要考查復(fù)合函數(shù)的單調(diào)性,對數(shù)函數(shù)、一次函數(shù)的性質(zhì),體現(xiàn)了轉(zhuǎn)化的數(shù)學思想,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | -2 | C. | 2i | D. | -2i |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ?x0∈R,使得${e^{x_0}}≤0$ | |
B. | $sinx+\frac{1}{sinx}≥2(x≠kπ,k∈Z)$ | |
C. | ?x∈R,2x>x2 | |
D. | 若命題p:?x0∈R,使得$x_0^2-{x_0}+1<0$,則¬p:?x0∈R,都有x2-x+1≥0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com