11.設(shè)x,y∈R,則“x≥2且y≥2”是“x+y≥4”的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

分析 根據(jù)充分必要條件的定義判斷即可.

解答 解:由x≥2且y≥2”推出“x+y≥4”,是充分條件,
由x+y≥4推不出x≥2且y≥2,比如x=1,y=5,故不是必要條件,
故選:A.

點評 本題考查了充分必要條件,考查不等式的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.直線ax+y-5=0截圓C:x2+y2-4x-2y+1=0的弦長為4,則a=( 。
A.-2B.-3C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.不等式x+y-1>0表示的區(qū)域在直線x+y-1=0的( 。
A.左上方B.左下方C.右上方D.右下方

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖是某一幾何體的三視圖,則這個幾何體的側(cè)面積和體積分別是(  )
A.8$\sqrt{2}$+2$\sqrt{5}$+6,8B.2$\sqrt{2}$+8$\sqrt{5}$+6,8C.4$\sqrt{2}$+8$\sqrt{5}$+12,16D.8$\sqrt{2}$+4$\sqrt{5}$+12,16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,直線OA,OB方程分別為y=x和y=-$\frac{{\sqrt{3}}}{3}$x,過點P(2,0)作直線AB分別交OA,OB于A,B兩點,當(dāng)AB的中點C恰好落在與直線2x+y+m=0,(m∈R)垂直且過原點的直線上時,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)$f(x)=\frac{1+lnx}{x}$,證明:f(x)≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.現(xiàn)有1名男同學(xué)和2名女同學(xué)參加演講比賽,共有2道演講備選題目,若每位選手從中有放回地隨機選出一道題進(jìn)行演講,以下說法不正確的是( 。
A.三人都抽到同一題的概率為$\frac{1}{4}$
B.只有兩名女同學(xué)抽到同一題的概率為$\frac{1}{4}$
C.其中恰有一男一女抽到同一道題的概率為$\frac{1}{2}$
D.至少有兩名同學(xué)抽到同一題的概率為$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)y=2sin(ωx+φ)為偶函數(shù)(0<φ<π),其圖象與直線y=2相鄰的兩個交點的橫坐標(biāo)分別為x1,x2且|x1-x2|=π則( 。
A.ω=2,φ=$\frac{π}{2}$B.ω=$\frac{1}{2}$,φ=$\frac{π}{2}$C.ω=$\frac{1}{2}$,φ=$\frac{π}{4}$D.ω=2,φ=$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知f(x)是定義在R上的奇函數(shù),且周期為2,當(dāng)x∈(0,1]時,f(x)=1-x,則函數(shù)f(x)在[0,2017]上的零點個數(shù)是( 。
A.1008B.1009C.2017D.2018

查看答案和解析>>

同步練習(xí)冊答案