【題目】在平面直角坐標(biāo)系中,已知直線∶和圓∶,是直線上一點,過點作圓的兩條切線,切點分別為.
(1)若,求點坐標(biāo);
(2)若圓上存在點,使得,求點的橫坐標(biāo)的取值范圍;
(3)設(shè)線段的中點為,與軸的交點為,求線段長的最大值.
【答案】(1);(2);(3).
【解析】
(1)先求出到圓心的距離為,設(shè),解方程即得解;(2)設(shè),若圓上存在點,使得,分析得到,即,解不等式得解;(3)設(shè),可得所在直線方程:,點的軌跡為:,根據(jù)求出最大值得解.
(1)若,則四邊形為正方形,
則到圓心的距離為,
∵在直線上,設(shè)
故,解得,故;
(2)設(shè),若圓上存在點,使得,
過作圓的切線,,∴,∴,
在直角三角形中,∵,
∴,即,∴,
∴,解得,
∴點橫坐標(biāo)的取值范圍為:;
(3)設(shè),則以為直徑的圓的方程為
化簡得,與聯(lián)立,
可得所在直線方程:,
聯(lián)立,得,
∴的坐標(biāo)為,
可得點的軌跡為:,
圓心,半徑.其中原點為極限點(也可以去掉).
由題意可知,∴.
∴.
∴線段的最大值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(理)設(shè)b和c分別是先后拋擲一枚骰子得到的點數(shù),用隨機變量ξ表示方程x2+bx+c=0實根的個數(shù)(重根按一個計).
(1)求方程x2+bx+c=0有實根的概率.
(2)求ξ的分布列和數(shù)學(xué)期望.
(3)求在先后兩次出現(xiàn)的點數(shù)中有5的條件下,方程x2+bx+c=0有實根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長均相等的四棱錐中, 為底面正方形的中心, ,分別為側(cè)棱,的中點,有下列結(jié)論正確的有:( )
A.∥平面B.平面∥平面
C.直線與直線所成角的大小為D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,摩天輪上的一點在時刻距離地面的高度滿足,已知該摩天輪的半徑為60米,摩天輪轉(zhuǎn)輪中心O距離地面的高度是70米,摩天輪逆時針做勻速轉(zhuǎn)動,每6分鐘轉(zhuǎn)一圈,點的起始位置在摩天輪的最低點處.
(1)根據(jù)條件求出y(米)關(guān)于(分鐘)的解析式;
(2)在摩天輪從最低點開始計時轉(zhuǎn)動的一圈內(nèi),有多長時間點P距離地面不低于100米?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:極坐標(biāo)與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).
(1)求曲線的普通方程;
(2)經(jīng)過點(平面直角坐標(biāo)系中點)作直線交曲線于, 兩點,若恰好為線段的三等分點,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】上饒某購物中心在開業(yè)之后,為了解消費者購物金額的分布,在當(dāng)月的電腦消費小票中隨機抽取張進行統(tǒng)計,將結(jié)果分成5組,分別是,制成如圖所示的頻率分布直方圖(假設(shè)消費金額均在元的區(qū)間內(nèi)).
(1)若在消費金額為元區(qū)間內(nèi)按分層抽樣抽取6張電腦小票,再從中任選2張,求這2張小票均來自元區(qū)間的概率;
(2)為做好五一勞動節(jié)期間的商場促銷活動,策劃人員設(shè)計了兩種不同的促銷方案:
方案一:全場商品打8.5折;
方案二:全場購物滿200元減20元,滿400元減50元,滿600元減80元,滿800元減120元,以上減免只取最高優(yōu)惠,不重復(fù)減免.利用直方圖的信息分析哪種方案優(yōu)惠力度更大,并說明理由(直方圖中每個小組取中間值作為該組數(shù)據(jù)的替代值).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點,焦點在軸上的橢圓過點,離心率為.
(1)求橢圓的方程;
(2)直線過橢圓的左焦點,且與橢圓交于兩點,若的面積為,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com