18.已知z=$\frac{3}{1+{i}^{2017}}$復(fù)數(shù)(i為虛數(shù)單位),則復(fù)數(shù)z的共軛復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡,進(jìn)一步求出$\overline{z}$的坐標(biāo)得答案.

解答 解:∵z=$\frac{3}{1+{i}^{2017}}$=$\frac{3}{1+({i}^{4})^{504}•i}$=$\frac{3}{1+i}=\frac{3(1-i)}{(1+i)(1-i)}=\frac{3}{2}-\frac{3}{2}i$,
∴$\overline{z}=\frac{3}{2}+\frac{3}{2}i$.
∴復(fù)數(shù)z的共軛復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)的坐標(biāo)為($\frac{3}{2},\frac{3}{2}$),位于第一象限.
故選:A.

點(diǎn)評 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.由a1=1,d=3確定的等差數(shù)列{an},當(dāng)an=298,序號n等于( 。
A.96B.98C.100D.101

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列推理是歸納推理的是( 。
A.由于f(x)=xcosx滿足f(-x)=-f(x)對?x∈R成立,推斷f(x)=xcosx為奇函數(shù)
B.由a1=1,an=3n-1,求出s1,s2,s3,猜出數(shù)列{an}的前n項(xiàng)和的表達(dá)式
C.由圓x2+y2=1的面積S=πr2,推斷:橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1的面積S=πab
D.由平面三角形的性質(zhì)推測空間四面體的性質(zhì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某校選擇高一年級三個班進(jìn)行為期二年的教學(xué)改革試驗(yàn),為此需要為這三個班各購買某種設(shè)備1臺,經(jīng)市場調(diào)研,該種設(shè)備有甲乙兩型產(chǎn)品,甲型價格是3000元/臺,乙型價格是2000元/臺,這兩型產(chǎn)品使用壽命都至少是一年,甲型產(chǎn)品使用壽命低于2年的概率是$\frac{1}{4}$,乙型產(chǎn)品使用壽命低于2年的概率是$\frac{2}{3}$,若某班設(shè)備在試驗(yàn)期內(nèi)使用壽命到期,則需要再購買乙型產(chǎn)品更換.
(1)若該校購買甲型2臺,乙型1臺,求試驗(yàn)期內(nèi)購買該種設(shè)備總費(fèi)用恰好是10000元的概率;
(2)該校有購買該種設(shè)備的兩種方案,A方案:購買甲型3臺;B方案:購買甲型2臺乙型1臺.若根據(jù)2年試驗(yàn)期內(nèi)購買該設(shè)備總費(fèi)用的期望值決定選擇哪種方案,你認(rèn)為該校應(yīng)該選擇哪種方案?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.己知函數(shù)f(x)=alnx-$\frac{1}{2}$x2 (a∈R).
(Ⅰ)求a=l時,求f(x)的單調(diào)區(qū)間;
(Ⅱ)討論f(x)在定義域上的零點(diǎn)個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且a1=-1,an+1=SnSn+1,計算S1,S2,S3,由此推測計算Sn的公式,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列不等關(guān)系式正確的是(  )
A.${1.5^{\frac{5}{4}}}$>${1.7^{\frac{5}{4}}}$B.${(\frac{4}{3})^{\frac{3}{4}}}$>${(\frac{4}{3})^{\frac{4}{3}}}$C.${(\sqrt{2})^{-\frac{1}{2}}}$>${(\sqrt{3})^{-\frac{1}{2}}}$D.${(0.7)^{\frac{3}{2}}}$>${(0.7)^{\frac{1}{2}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.計算下列各式的值:
(1)$\sqrt{\frac{25}{9}}$-($\frac{8}{27}$)${\;}^{\frac{1}{3}}$-(π+e)0+($\frac{1}{4}$)${\;}^{\frac{1}{2}}$;
(2)log2$\sqrt{\frac{7}{72}}$+log26-$\frac{1}{2}$log228.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知集合A={x|-2<x<5};
(1)若B⊆A,B={x|m+1<x<2m-1},求實(shí)數(shù)m的取值范圍;
(2)若A⊆B,B={x|m-6<x<2m-1},求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案