14.若a=50.2,b=logπ3,c=log5sin$\frac{{\sqrt{3}}}{2}$π,則( 。
A.b>c>aB.b>a>cC.a>b>cD.c>a>b

分析 分別利用指數(shù)式與對(duì)數(shù)函數(shù)的運(yùn)算性質(zhì)比較三個(gè)數(shù)與0和1的大小得答案.

解答 解:∵a=50.2>50=1,
0<b=logπ3<logππ=1,
c=log5sin$\frac{{\sqrt{3}}}{2}$π≤0,
∴a>b>c.
故選:C.

點(diǎn)評(píng) 本題考查對(duì)數(shù)值的大小比較,考查了指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的運(yùn)算性質(zhì),是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)拋物線y2=4x的焦點(diǎn)為F,過(guò)點(diǎn)M(2,0)的直線與拋物線相交于A,B兩點(diǎn),與拋物線的準(zhǔn)線相交于點(diǎn)C,$|{BF}|=\frac{3}{2}$,則$\frac{{|{BC}|}}{{|{AC}|}}$=(  )
A.1:4B.1:5C.1:7D.1:6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知橢圓C1:$\frac{x^2}{16}+\frac{y^2}{4}$=1,直線l1:y=kx+m(m>0)與圓C2:(x-1)2+y2=1相切且與橢圓C1交于A,B兩點(diǎn).
(Ⅰ)若線段AB中點(diǎn)的橫坐標(biāo)為$\frac{4}{3}$,求m的值;
(Ⅱ)過(guò)原點(diǎn)O作l1的平行線l2交橢圓于C,D兩點(diǎn),設(shè)|AB|=λ|CD|,求λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)f(x)是定義域R上的函數(shù),且f(0)=1,對(duì)任意x,y∈R,恒有f(x-y)=f(x)-y(2x-y+1),求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知點(diǎn)P在拋物線y2=4x上,它到拋物線焦點(diǎn)的距離為5,那么點(diǎn)P的坐標(biāo)為( 。
A.(4,4),(4,-4)B.(-4,4),(-4,-4)C.(5,$2\sqrt{5}$),(5,$-2\sqrt{5}$)D.(-5,$2\sqrt{5}$),(-5,$-2\sqrt{5}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.函數(shù)y=2$\sqrt{2-x}$+$\sqrt{2x-3}$的最大值為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知坐標(biāo)原點(diǎn)為O,過(guò)拋物線y2=4x的焦點(diǎn)F作一直線l,與拋物線交于A,B兩點(diǎn),若|$\overrightarrow{AB}$|=6,則$\overrightarrow{FA}$$•\overrightarrow{FB}$=( 。
A.-6B.-2C.2D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知數(shù)列{bn}的前n項(xiàng)和為Sn,且Sn=2bn-1(n∈N*),
(1)求b1,b2,b3,試猜想出{bn}的通項(xiàng)公式,并用數(shù)學(xué)歸納法加以證明;
(2)求和:b1${C}_{n}^{0}$+b2${C}_{n}^{1}$+b3${C}_{n}^{2}$+…+bn+1${C}_{n}^{n}$
(3)求和:(log2b1)•${C}_{n}^{0}$+(log2b2)•${C}_{n}^{1}$+(log2b3)•${C}_{n}^{2}$+…(log2bn+1)•${C}_{n}^{n}$
(4)若M(n)=4+(log2bn)•bn+3,試比較M(n)與8n2-4n的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知平行四邊形ABCD中,AC=3,BD=2,則$\overrightarrow{AB}$•$\overrightarrow{AD}$=$\frac{5}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案