9.某幾何體的三視圖如圖所示,則其體積為$\frac{8}{3}$.

分析 由三視圖還原原幾何體為四棱錐,底面是邊長為2的正方形,高是2,側(cè)棱PA⊥底面ABCD,由棱錐體積得答案.

解答 解:由三視圖可知,原幾何體是底面是邊長為2的正方形,高是2的四棱錐,且側(cè)棱PA⊥底面ABCD,如圖,

${V}_{P-ABCD}=\frac{1}{3}×2×2×2=\frac{8}{3}$.
故答案為:$\frac{8}{3}$.

點評 本題考查由三視圖求幾何體的體積,考查空間想象能力和思維能力,關(guān)鍵是由三視圖還原原幾何體,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

16.把黑、紅、白3張紙牌分給甲、乙、丙三人,每人一張,則事件“甲分得黑牌”與“乙分得黑牌”是( 。
A.對立事件B.必然事件
C.不可能事件D.互斥但不對立事件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.某濕地公園有一邊長為4百米的正方形水域ABCD,如圖,EF是其中軸線,水域正中央有一半徑為1百米的圓形島嶼M,小島上種植有各種花卉.現(xiàn)欲在線段AF上某點P處(AP的長度不超過1百米)開始建造一直線觀光木橋與小島邊緣相切(不計木橋?qū)挾龋cBC相交于Q點.過Q點繼續(xù)建造直線木橋NQ與小島邊緣相切,NQ與中軸線EF交于N點,N點與E點也以木橋直線相連.
(1)當AP=1百米時,求木橋PQ的長度(單位:百米);
(2)問是否存在常數(shù)m,使得mQN+NE為定值?如果存在,請求出常數(shù)m,并給出定值,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.如圖是某幾何體的三視圖,俯視圖是邊長為2的正三角形,則該幾何體的體積是$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.甲、乙、丙三人到戶外植樹,三人分工合作,一人挖坑和填土,一人施肥,一人澆水,他們的身高各不同,現(xiàn)了解到以下情況:
①甲不是最高的;
②最高的沒澆水;
③最矮的施肥;
④乙不是最矮的,也沒挖坑和填土.
可以判斷丙的分工是挖坑和填土(從挖坑,施肥,澆水中選一項).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=lg(2+x)+lg(2-x).
(Ⅰ) 記函數(shù)g(x)=10f(x)+3x,求函數(shù)g(x)的值域;
(Ⅱ) 若不等式f(x)>m2-3m-18+lg4有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知集合A={x|x2+4≤5x,x∈R},B={(x,y)|y=3x+2,x∈R},則A∩B=( 。
A.(2,4]B.(2,+∞)C.[2,4]D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.把正整數(shù)排成如圖甲的三角形數(shù)陣,然后擦去第偶數(shù)行中的奇數(shù)和第奇數(shù)行中的偶數(shù),得到如圖乙的三角形數(shù)陣,再把圖乙的數(shù)按從小到大的順序排成一列,得到一個數(shù)列{an},則a2014=3965.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.在Rt△ABC中,CA⊥CB,斜邊AB上的高為h1,則$\frac{1}{{h}_{1}^{2}}$=$\frac{1}{C{A}^{2}}$+$\frac{1}{C{B}^{2}}$;類比此性質(zhì),如圖,在四面體P-ABC中,若PA,PB,PC兩兩相垂直,底面ABC上的高為h,則得到的正確結(jié)論為( 。
A.$\frac{1}{h}$=$\frac{1}{PA}$+$\frac{1}{PB}$+$\frac{1}{PC}$B.$\frac{1}{{h}^{2}}$=$\frac{1}{P{A}^{2}}$+$\frac{1}{P{B}^{2}}$+$\frac{1}{P{C}^{2}}$
C.$\frac{1}{{h}^{3}}$=$\frac{1}{P{A}^{3}}$+$\frac{1}{P{B}^{3}}$+$\frac{1}{P{C}^{3}}$D.$\frac{1}{{h}^{4}}$=$\frac{1}{P{A}^{4}}$+$\frac{1}{P{B}^{4}}$+$\frac{1}{P{C}^{4}}$

查看答案和解析>>

同步練習冊答案