【題目】若函數有三個不同的零點,則實數的取值范圍是( )
A.B.
C.D.
科目:高中數學 來源: 題型:
【題目】已知拋物線:的焦點為,直線:與拋物線交于,兩點.
(1)若,求直線的方程;
(2)過點作直線交拋物線于,兩點,若線段,的中點分別為,,直線與軸的交點為,求點到直線與距離和的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】把方程表示的曲線作為函數的圖象,則下列結論正確的是( )
①在R上單調遞減
②的圖像關于原點對稱
③的圖象上的點到坐標原點的距離的最小值為3
④函數不存在零點
A.①③B.①②③C.①③④D.①②③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】交通安全法有規(guī)定:機動車行經人行橫道時,應當減速行駛;遇行人正在通過人行橫道,應當停車讓行.機動車行經沒有交通信號的道路時,遇行人橫過馬路,應當避讓.我們將符合這條規(guī)定的稱為“禮讓斑馬線”,不符合這條規(guī)定的稱為“不禮讓斑馬線”.下表是六安市某十字路口監(jiān)控設備所抓拍的5個月內駕駛員“不禮讓斑馬線”行為的統(tǒng)計數據:
月份 | 1 | 2 | 3 | 4 | 5 |
“不禮讓斑馬線”的駕駛員人數 | 120 | 105 | 100 | 85 | 90 |
(1)根據表中所給的5個月的數據,可用線性回歸模型擬合與的關系,請用相關系數加以說明;
(2)求“不禮讓斑馬線”的駕駛員人數關于月份之間的線性回歸方程;
(3)若從4,5月份“不禮讓斑馬線”的駕駛員中分別選取4人和2人,再從所選取的6人中任意抽取2人進行交規(guī)調查,求抽取的2人分別來自兩個月份的概率;
參考公式:線性回歸方程,其中,,.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,在直角梯形中,,,,,,點E在上,且,將三角形沿線段折起到的位置,(如圖2).
(1)求證:平面平面;
(2)在線段上是否存在點M,使平面?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:的左、右頂點分別為,,上、下頂點分別為,,四邊形的面積為,坐標原點O到直線的距離為.
(1)求橢圓C的方程;
(2)過橢圓C上一點P作兩條直線,分別與橢圓C相交于異于點P的點A,B,若四邊形為平行四邊形,探究四邊形的面積是否為定值.若是,求出此定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=axex,g(x)=x2+2x+b,若曲線y=f(x)與曲線y=g(x)都過點P(1,c).且在點P處有相同的切線l.
(Ⅰ)求切線l的方程;
(Ⅱ)若關于x的不等式k[ef(x)]≥g(x)對任意x∈[﹣1,+∞)恒成立,求實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙、丙三人參加競答游戲,一輪三個題目,每人回答一題為體現公平,制定如下規(guī)則:
①第一輪回答順序為甲、乙、丙;第二輪回答順序為乙、丙、甲;第三輪回答順序為丙,甲、乙;第四輪回答順序為甲、乙、丙;…,后面按此規(guī)律依次向下進行;
②當一人回答不正確時,競答結束,最后一個回答正確的人勝出.
已知,每次甲回答正確的概率為,乙回答正確的概率為,丙回答正確的概率為,三個人回答每個問題相互獨立.
(1)求一輪中三人全回答正確的概率;
(2)分別求甲在第一輪、第二輪、第三輪勝出的概率;
(3)記為甲在第輪勝出的概率,為乙在第輪勝出的概率,求與,并比較與的大小.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com