18.在平面直角坐標(biāo)系中,將曲線C:y=sin2x上每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼?倍,所得新的曲線方程為y=3sin2x.

分析 把原函數(shù)解析式中的y的系數(shù)換成原來的3倍,即得所求函數(shù)的解析式.

解答 解:將函數(shù)y=sin2x圖象上每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼?倍,
得到y(tǒng)=3sin2x 的圖象.
故答案為:y=3sin2x.

點(diǎn)評(píng) 本題考查y=Asin(ωx+∅)的圖象的變換,注意應(yīng)用圖象變換的規(guī)律.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在等比數(shù)列{an}中,已知a3=4,a7-2a5-32=0,則a5+a7=80.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知數(shù)列{an}中,a1=1,a2=3,an+2=an+1+$\frac{1}{{a}_{n}}$,則a4=$\frac{13}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知矩形ABCD(AB>AD)的周長(zhǎng)為12,若將它關(guān)于對(duì)角線AC折起后,使邊AB與CD交于點(diǎn)P(如圖所示),則△ADP面積的最大值為27-18$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.執(zhí)行如圖所示的程序框圖,數(shù)列{an}滿足an=n-1,輸入n=4,x=3,則輸出的結(jié)果v的值為( 。
A.34B.68C.96D.102

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$(其中t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2-2mρcosθ-4=0(其中m>0)
(1)點(diǎn)M的直角坐標(biāo)為(2,2),且點(diǎn)M在曲線C內(nèi),求實(shí)數(shù)m的取值范圍;
(2)若m=2,當(dāng)α變化時(shí),求直線被曲線C截得的弦長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=$\frac{1}{\sqrt{1-x}}$的定義域?yàn)镸,g(x)=lnx的定義域?yàn)镹,則M∩N=( 。
A.{x|x>-1}B.{x|x<1}C.{x|0<x<1}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中將底面為直角三角形,側(cè)棱垂直于底面的三棱柱稱之為塹堵,如圖,在塹堵ABC-A1B1C1中,AB=BC,AA1>AB,塹堵的頂點(diǎn)C1到直線A1C的距離為m,C1到平面A1BC的距離為n,則$\frac{m}{n}$的取值范圍是($\frac{2\sqrt{3}}{3}$,$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知直線l的方程為3x+4y-12=0,求滿足下列條件的直線l′的方程.
(1)l′與l平行且過點(diǎn)(-1,3);
(2)l′與l垂直且在兩坐標(biāo)軸上的截距相等.

查看答案和解析>>

同步練習(xí)冊(cè)答案