19.如圖所示,在平行六面體ABCD-A1B1C1D1中,底面是邊長為2的正方形,側棱AA1的長為2,且∠A1AB=∠A1AD=120°,E為AB的中點,F(xiàn)為CC1的中點,則EF的長為$\sqrt{3}$.

分析 利用向量模的計算公式和向量的數(shù)量積的定義即可得出.

解答 解:∵$\overrightarrow{EF}$=$\overrightarrow{EB}$+$\overrightarrow{BC}$+$\overrightarrow{CF}$,底面是邊長為2的正方形,側棱AA1的長為2,且∠A1AB=∠A1AD=120°,E為AB的中點,F(xiàn)為CC1的中點,
∴${\overrightarrow{EF}}^{2}$=1+4+1+2•1•2•cos90°+2•2•1•cos120°+2•1•1•cos120°=3,
∴$\overrightarrow{EF}$=$\sqrt{3}$,
故答案為$\sqrt{3}$.

點評 熟練掌握向量模的計算公式和向量的數(shù)量積的定義是解題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,設P是圓x2+y2=6上的動點,點D是P在x軸上的投影,M為PD上一點,且$\overrightarrow{DP}=\sqrt{2}\overrightarrow{DM}$.
(1)當P在圓上運動時,求點M的軌跡C的方程;
(2)若點Q(1,1)恰為直線l與曲線C相交弦的中點,試確定直線l的方程;
(3)直線$x+y-\sqrt{3}=0$與曲線C相交于E、G兩點,F(xiàn)、H為曲線C上兩點,若四邊形EFGH對角線相互垂直,求SEFGH的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖所示,已知橢圓C1和拋物線C2有公共焦點F(1,0),C1的中心和C2的頂點都在坐標原點O,過點,M(4,0)的直線l與拋物線C2分別相交于A,B兩點.
(1)求證:以AB為直徑的圓過原點O;
(2)若坐標原點關于直線l的對稱點P在拋物線C2上,直線l與橢圓C1相切,求橢圓C1的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)$f(x)=cosx({\sqrt{3}sinx+cosx})$,x∈R.
(1)求函數(shù)f(x)的最大值;
(2)若$f({\frac{θ}{2}})=\frac{3}{4}$,θ∈R,求$f({θ+\frac{π}{3}})$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.若棱長為a的正方體的表面積等于一個球的表面積,棱長為b的正方體的體積等于該球的體積,則a,b的大小關系是a<b.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.在△ABC中,三內角A、B、C對應的邊分別為a、b、c,且a=1,$A=\frac{π}{6}$.
(Ⅰ)當$b=\sqrt{3}$,求角C的大。
(Ⅱ)求△ABC面積最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知函數(shù)$f(x)=\left\{\begin{array}{l}({1-2a})x+3a,x<1\\ lnx,x≥1\end{array}\right.$的值域為R,則實數(shù)a的取值范圍是( 。
A.$[{-1,\frac{1}{2}})$B.$({-1,\frac{1}{2}})$C.$({0,\frac{1}{2}})$D.(-∞,-1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8..如圖所示,在長方體ABCD-A1B1C1D1中,AB=AD=1,AA1=2,點P為DD1的中點.
(1)求證:直線BD1∥平面PAC
(2)求證:平面PAC⊥平面BDD1B1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.命題p:關于x的方程x2+mx+m=0無實根,命題q:函數(shù)f(x)=(m+1)x在R上為減函數(shù),若“p∨q”為假命題,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案