20.已知命題p:sinx+$\frac{4}{sinx}$≥4,命題q:“x2-3x>0”是“x>4”的必要不充分條件,則下列命題正確的是( 。
A.p∧qB.p∨(?q)C.(?p)∧qD.(?p)∧(?q)

分析 命題p:sinx<0時,sinx+$\frac{4}{sinx}$<0,即可判斷出真假.命題q:由x2-3x>0,解得x>3或x<0,即可判斷出關(guān)系.再利用復(fù)合命題真假的判定方法即可得出.

解答 解:命題p:sinx<0時,sinx+$\frac{4}{sinx}$<0,因此是假命題.
命題q:由x2-3x>0,解得x>3或x<0,因此:“x2-3x>0”是“x>4”的必要不充分條件,是真命題.
則下列命題正確的是(¬p)∧q.
故選:C.

點評 本題考查了不等式解法、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)y=f(x)的定義域為{x|x∈R,且x≠0},滿足f(x)+f(-x)=0,當(dāng)x>0時,f(x)=1nx-x+1,則函數(shù)y=f(x)的大致圖象為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知集合M={x|x2-3x+2=0},N={x|x2-2x+a=0},若N⊆M,則實數(shù)a的取值范圍為[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{y≤x}\\{y≥3x-6}\\{x+y≥2}\end{array}\right.$,則目標(biāo)函數(shù)z=$lo{g}_{\sqrt{3}}$(2x+y)的最小值( 。
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知α、β為銳角,若sinα=$\frac{{2\sqrt{5}}}{5}$,sin(α+β)=$\frac{3}{5}$,則cos2β的值為(  )
A.$-\frac{117}{125}$B.$\frac{3}{5}$C.$-\frac{117}{125}$或$\frac{3}{5}$D.$\frac{117}{125}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在直角坐標(biāo)系xOy中,以O(shè)為極點,x軸的非負半軸為極軸建立極坐標(biāo)系,圓E的參數(shù)方程為$\left\{\begin{array}{l}x=1+cosφ\\ y=1+sinφ\end{array}\right.$(φ為參數(shù)).
(1)求圓E的極坐標(biāo)方程;
(2)若直線l的參數(shù)方程為$\left\{\begin{array}{l}x=3-\frac{{\sqrt{3}}}{2}t\\ y=2+\frac{1}{2}t\end{array}\right.$(t為參數(shù)),求圓E的圓心到直線l的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知A={(x,y)|x+y≤8,x≥0,y≥0},B={(x,y)|x≤2,3x-y≥0},若向區(qū)域A隨機投一點P,則點P落入?yún)^(qū)域B的概率為$\frac{3}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{log_a}({\frac{1}{x+1}})({-1<x<1})\\ f({2-x})-a+1({1<x<3})\end{array}\right.$,(a>0,a≠1),若x1≠x2,則f(x1)=f(x2)時,x1+x2與2的大小關(guān)系是( 。
A.恒小于2B.恒大于2C.恒等于2D.與a相關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}的各項均為正數(shù),其前n項和為Sn,且滿足Sn=2an-a1,n∈N*
(Ⅰ)若a1=1,求數(shù)列{an}的通項公式;
(Ⅱ)若對于正整數(shù)m,p,q(m<p<q),5am,ap,aq這三項經(jīng)過適當(dāng)?shù)呐判蚝竽軜?gòu)成等差數(shù)列,試用m表示p和q;
(Ⅲ)已知數(shù)列{tn},{rn}滿足|tn|=|rn|=an,數(shù)列{tn},{rn}的前100項和分別為T100,R100,且T100=R100,試問:是否對于任意的正整數(shù)k(1≤k≤100)均有tk=rk成立,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案