10.拋物線y2=4x的焦點為F,拋物線上一點M在其準(zhǔn)線上的射影為N,若∠NMF=$\frac{2π}{3}$,則M點的橫坐標(biāo)系是(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{3}{4}$

分析 作出函數(shù)的圖象,設(shè)出MN的長度,利用拋物線的定義,轉(zhuǎn)化求解即可.

解答 解:依題意,作圖如圖:
∵y2=4x的焦點F(1,0),準(zhǔn)線方程為:x=-1,
設(shè)NM=MF=m,過M作MP垂直x軸于P,∠NMF=$\frac{2π}{3}$,則∠PMF=$\frac{π}{6}$,PF=$\frac{1}{2}m$,所以m+$\frac{1}{2}m$=2,解得m=$\frac{4}{3}$,
則P的橫坐標(biāo)為:$\frac{1}{3}$.
故選:B.

點評 本題考查拋物線的簡單性質(zhì),考查轉(zhuǎn)化思想與數(shù)形結(jié)合思想,考查運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知(x+1)6(ax-1)2的展開式中含x3項的系數(shù)是20,則a的值等于0或5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如果$\overrightarrow{a}$、$\overrightarrow$是兩個單位向量,那么下列四個結(jié)論中正確的是(  )
A.$\overrightarrow{a}$=$\overrightarrow$B.$\overrightarrow{a}$•$\overrightarrow$=1C.$\overrightarrow{a}$=-$\overrightarrow$D.|$\overrightarrow{a}$|=|$\overrightarrow$|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知a>2,b>2,則a+b與ab的大小關(guān)系是( 。
A.a+b>abB.a+b<abC.a+b≥abD.a+b≤ab

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知x>0,y>0,且$\frac{2}{x}$+$\frac{1}{y}$=1,若x+2y≥a恒成立,則實數(shù)a的范圍為(-∞,8].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知點P是圓x2+y2=3上的動點,點D是P在x軸上的射影,設(shè)M是線段PD上一點,且|MD|=$\frac{\sqrt{6}}{3}$|PD|.
(1)當(dāng)點P在圓上運動時,求點M的軌跡C的方程;
(2)設(shè)直線l與曲線C交于A(x1,y1),B(x2,y2)兩點,△OAB的面積S=$\frac{\sqrt{6}}{2}$(O為坐標(biāo)原點).證明:x12+x22為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別為F1、F2,上頂點為B,Q點坐標(biāo)為(3,0),且$\overrightarrow{{F}_{1}B}$•$\overrightarrow{QB}$=0,2$\overrightarrow{{F}_{1}{F}_{2}}$+$\overrightarrow{Q{F}_{1}}$=0.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過定點P(0,2)的直線l與橢圓C交于M,N兩點(M在P,N之間),設(shè)直線l的斜率為k(k>0),在x軸上是否存在點A(m,0),使得以AM,AN為鄰邊的平行四邊形為菱形?若存在,求出實數(shù)m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)f(x)=($\frac{1}{2}$)x,則f(log2$\sqrt{5}$)=( 。
A.3B.$\frac{\sqrt{5}}{5}$C.$\sqrt{15}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)F為拋物線y2=2px(p>0)的焦點,A、B、C為該拋物線上三點,若$\overrightarrow{FA}$+$\overrightarrow{FB}$+$\overrightarrow{FC}$=$\overrightarrow{0}$,且|$\overrightarrow{FA}$|+|$\overrightarrow{FB}$|+$\overrightarrow{FC}$|=6,則p=2.

查看答案和解析>>

同步練習(xí)冊答案