分析 由條件可得y2=$\frac{1}{2}$(2x-3x2)≥0,解得0≤x≤$\frac{2}{3}$,由代入法,可得x2+y2=x2+$\frac{1}{2}$(2x-3x2),配方,結(jié)合二次函數(shù)的對稱軸和區(qū)間的關(guān)系,即可得到所求最大值.
解答 解:3x2+2y2=2x,可得
y2=$\frac{1}{2}$(2x-3x2)≥0,
解得0≤x≤$\frac{2}{3}$,
則x2+y2=x2+$\frac{1}{2}$(2x-3x2)
=$\frac{1}{2}$(2x-x2)=$\frac{1}{2}$[-(x-1)2+1],
由對稱軸為x=1,
區(qū)間[0,$\frac{2}{3}$]在對稱軸的左邊,為增區(qū)間,
可得x=$\frac{2}{3}$時,取得最大值$\frac{4}{9}$.
故答案為:$\frac{4}{9}$.
點評 本題考查最值的求法,注意運用代入消元法和配方法,運用二次函數(shù)的最值求法,考查運算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 10 | B. | 5 | C. | 6 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -30 | B. | 30 | C. | -15 | D. | 15 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com