A. | a>b>c | B. | b>a>c | C. | c>a>b | D. | a>c>b |
分析 利用兩角和公式和倍角公式對(duì)a,b,c分別化簡(jiǎn),利用誘導(dǎo)公式再轉(zhuǎn)化成單調(diào)區(qū)間的正弦函數(shù),最后利用正弦函數(shù)的單調(diào)性求得答案.
解答 解:a=sin40°cos127°+cos40°sin127°=sin(40°+127°)=sin167°=sin13,
b=$\frac{\sqrt{2}}{2}$(sin56°-cos56°)=$\frac{\sqrt{2}}{2}$sin56°-$\frac{\sqrt{2}}{2}$cos56°=sin(56°-45°)=sin11°,
$c=\frac{\frac{co{s}^{2}39°-si{n}^{2}39°}{co{s}^{2}39°}}{\frac{si{n}^{2}39°+co{s}^{2}39°}{co{s}^{2}39°}}$=cos239°-sin239°=cos78°=sin12°,
∵sin13°>sin12°>sin11°,
∴a>c>b.
故選:D.
點(diǎn)評(píng) 本題考查了三角函數(shù)的化簡(jiǎn)求值,考查了兩角和公式,二倍角公式,誘導(dǎo)公式的應(yīng)用,正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | $2\sqrt{3}$ | C. | 4 | D. | $3\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{2}$ | D. | π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{y}^{2}}{16}$+$\frac{{x}^{2}}{15}$=1 | B. | $\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{15}$=1 | C. | $\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1 | D. | $\frac{{y}^{2}}{4}$+$\frac{{x}^{2}}{3}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 36π | B. | $\frac{64\sqrt{2}}{3}$π | C. | 8$\sqrt{6}$π | D. | $\frac{8}{3}$π |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com