【題目】如圖,在四棱錐中,四邊形為平行四邊形,平面,,.

1)求證:平面;

2)求二面角的余弦值.

【答案】(1)見解析;(2)

【解析】

1)由題意知,利用等腰三角形三線合一的思想得出,由平面可得出,再利用直線與平面垂直的判定定理可得出平面;

2)以點(diǎn)為坐標(biāo)原點(diǎn),所在直線分別為軸、軸建立空間直角坐標(biāo)系,計(jì)算出平面和平面的法向量,然后利用空間向量法計(jì)算出二面角的余弦值.

1)因?yàn)樗倪呅?/span>是平行四邊形,,所以的中點(diǎn).

,所以.

因?yàn)?/span>平面,平面,所以.

,平面平面,故平面

2)因?yàn)?/span>,以為原點(diǎn)建立空間直角坐標(biāo)系如下圖所示,

設(shè),則、、、,

所以,,,

設(shè)平面的一個(gè)法向量為,則,所以,

,令,則,,所以.

同理可求得平面的一個(gè)法向量,

所以.

又分析知,二面角的平面角為銳角,

所以二面角的余弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,側(cè)棱垂直于底面,的中點(diǎn),過的平面與交于點(diǎn)

(1)求證:點(diǎn)的中點(diǎn);

(2)四邊形是什么平面圖形?說明理由,并求其面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)n為正整數(shù),集合A=對于集合A中的任意元素,

M=

當(dāng)n=3時(shí),, ,MM的值;

當(dāng)n=4時(shí)設(shè)BA的子集,且滿足對于B中的任意元素當(dāng)相同時(shí),M是奇數(shù);當(dāng)不同時(shí),M是偶數(shù).求集合B中元素個(gè)數(shù)的最大值;

給定不小于2n,設(shè)BA的子集,且滿足對于B中的任意兩個(gè)不同的元素,

M=0.寫出一個(gè)集合B,使其元素個(gè)數(shù)最多并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形為等腰梯形, , 沿對角線將旋轉(zhuǎn),使得點(diǎn)至點(diǎn)的位置,此時(shí)滿足.

(1)判斷的形狀,并證明;

(2)求二面角的平面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1時(shí),求上的單調(diào)區(qū)間;

2, 均恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究機(jī)構(gòu)為了了解各年齡層對高考改革方案的關(guān)注程度,隨機(jī)選取了200名年齡在內(nèi)的市民進(jìn)行了調(diào)查,并將結(jié)果繪制成如圖所示的頻率分布直方圖(分第一~五組區(qū)間分別為,,,,).

(1)求選取的市民年齡在內(nèi)的人數(shù);

(2)若從第3,4組用分層抽樣的方法選取5名市民進(jìn)行座談,再從中選取2人在座談會中作重點(diǎn)發(fā)言,求作重點(diǎn)發(fā)言的市民中至少有一人的年齡在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖在三棱柱,,側(cè)面底面.

(1)求證平面;

(2),,求棱柱的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在統(tǒng)計(jì)學(xué)中,偏差是指個(gè)別測定值與測定的平均值之差,在成績統(tǒng)計(jì)中,我們把某個(gè)同學(xué)的某刻考試成績與該科班平均分的差叫某科偏差,班主任為了了解個(gè)別學(xué)生的偏科情況,對學(xué)生數(shù)學(xué)偏差(單位:分)與物理偏差(單位:分)之間的關(guān)系進(jìn)行偏差分析,決定從全班40位同學(xué)中隨機(jī)抽取一個(gè)容量為8的樣本進(jìn)行分析,得到他們的兩科成績偏差數(shù)據(jù)如表:

(1)已知之間具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;

(2)若這次考試該班數(shù)學(xué)平均分為120分,物理平均分為92,試預(yù)測數(shù)學(xué)成績126分的同學(xué)的物理成績.

參考公式:

參考數(shù)據(jù): ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】連續(xù)拋擲同一顆骰子3次,則3次擲得的點(diǎn)數(shù)之和為9的概率是____

查看答案和解析>>

同步練習(xí)冊答案