【題目】學(xué)號(hào)為1,2,3的三位小學(xué)生,在課余時(shí)間一起玩“擲骰子爬樓梯”游戲,規(guī)則如下:投擲一顆骰子,將每次出現(xiàn)點(diǎn)數(shù)除以3,若學(xué)號(hào)與之同余(同除以3余數(shù)相同),則該小學(xué)生可以上2階樓梯,另外兩位只能上1階樓梯,假定他們都是從平地(0階樓梯)開始向上爬,且樓梯數(shù)足夠多.

1)經(jīng)過2次投擲骰子后,學(xué)號(hào)為1的同學(xué)站在第X階樓梯上,試求X的分布列;

2)經(jīng)過多次投擲后,學(xué)號(hào)為3的小學(xué)生能站在第n階樓梯的概率記為,試求,,的值,并探究數(shù)列可能滿足的一個(gè)遞推關(guān)系和通項(xiàng)公式.

【答案】1)答案見解析.(2,,

【解析】

1)由題意學(xué)號(hào)為1的同學(xué)可以上2階樓梯的概率為,可以上1階樓梯的概率為,分別求出、,即可得解;

2)由題意可得、、;由題意,構(gòu)造新數(shù)列即可得數(shù)列是以為首項(xiàng),以為公比的等比數(shù)列,再利用累加法即可得解.

1)由題意,當(dāng)投擲骰子出現(xiàn)1、4時(shí),學(xué)號(hào)為1的同學(xué)可以上2階樓梯,概率為,

當(dāng)投擲骰子出現(xiàn)其他點(diǎn)數(shù)時(shí),學(xué)號(hào)為1的同學(xué)可以上1階樓梯,概率為,

由題意,

所以,,,

所以X的分布列為:

X

2

3

4

P

2表示學(xué)號(hào)為3的小朋友能站在第1階樓梯的概率,

根據(jù)投擲骰子的規(guī)則,若出現(xiàn)點(diǎn)數(shù)為36,則他直接站在第2階樓梯,否則站在第1階樓梯.

,同理可得:

,

由于學(xué)號(hào)為3的小朋友能夠站在第n階樓梯,有兩種可能:

從第階樓梯投擲點(diǎn)數(shù)為36直接登2個(gè)臺(tái)階上來,

或從第階樓梯只登1個(gè)臺(tái)階上來.

根據(jù)骰子投擲規(guī)則,登兩階的概率是,登一階的概率是,

(*)

將(*)式可變形為

從而知:數(shù)列是以為首項(xiàng),以為公比的等比數(shù)列,

則有.

進(jìn)而可得:當(dāng)時(shí),

;

當(dāng)時(shí),;

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,平面,.

1)求證:平面;

2)求異面直線所成角的大小;

3)點(diǎn)在線段上,且,點(diǎn)在線段上,若平面,求的值(用含的代數(shù)式表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足,當(dāng)時(shí),.

1)求數(shù)列的通項(xiàng)公式;

2)若,數(shù)列的前項(xiàng)和為,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若點(diǎn)在平面外,過點(diǎn)作面的垂線,則稱垂足為點(diǎn)在平面內(nèi)的正投影,記為.如圖,在棱長(zhǎng)為的正方體中,記平面,平面,點(diǎn)是棱上一動(dòng)點(diǎn)(與不重合),,.給出下列三個(gè)結(jié)論:①線段長(zhǎng)度的取值范圍是;②存在點(diǎn)使得平面;③存在點(diǎn)使得.其中正確結(jié)論的序號(hào)是_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合,,分別從中各取2個(gè)不同的數(shù),能組成不同的能被3整除的四位偶數(shù)的個(gè)數(shù)是________(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量,函數(shù)

1)求函數(shù)的最小正周期與圖象的對(duì)稱軸方程;

2)若,,函數(shù)的最小值是,最大值是2,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,其中e是自然對(duì)數(shù)的底數(shù).

1)若曲線處的切線與曲線也相切.

①求實(shí)數(shù)a的值;

②求函數(shù)的單調(diào)區(qū)間;

2)設(shè),求證:當(dāng)時(shí),恰好有2個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓的左頂點(diǎn)為,右焦點(diǎn)為,,為橢圓上兩點(diǎn),圓.

(1)若軸,且滿足直線與圓相切,求圓的方程;

(2)若圓的半徑為2,點(diǎn),滿足,求直線被圓截得弦長(zhǎng)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某翻譯處有8名翻譯,其中有小張等3名英語翻譯,小李等3名日語翻譯,另外2名既能翻譯英語又能翻譯日語,現(xiàn)需選取5名翻譯參加翻譯工作,3名翻譯英語,2名翻譯日語,且小張與小李恰有1人選中,則有____種不同選取方法.

查看答案和解析>>

同步練習(xí)冊(cè)答案