4.設函數(shù)f(x)(x∈R)滿足f(2-x)=f(x),且當x≥1時,f(x)=lnx,則有( 。
A.f($\frac{1}{2}$)<f($\frac{1}{3}$)<f(2)B.f(2)<f($\frac{1}{2}$)<f($\frac{1}{3}$)C.f($\frac{1}{3}$)<f($\frac{1}{2}$)<f(2)D.f($\frac{1}{2}$)<f(2)<f($\frac{1}{3}$)

分析 由題意函數(shù)f(x)(x∈R)滿足f(2-x)=f(x),可得函數(shù)的對稱軸為x=1,當x≥1時,f(x)=lnx,根據(jù)f(x)的單調性可得答案.

解答 解:∵f(2-x)=f(x)∴函數(shù)的對稱軸為x=1
∵x≥1時,f(x)=lnx∴函數(shù)以x=1為對稱軸且左減右增,
故當x=1時函數(shù)有最小值,離x=1越遠,函數(shù)值越大.
∴f($\frac{1}{2}$)<f($\frac{1}{3}$)<f(2).
故選A

點評 本題考查了函數(shù)的對稱問題,單調性和對數(shù)函數(shù)及性質.屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

14.與函數(shù)y=x-1-(x-2)0表示同一個函數(shù)的是( 。
A.y=x-2B.$y=\frac{{{x^2}-4}}{x+2}$C.$y=\frac{{{{({x-2})}^2}}}{x-2}$D.$y={({\frac{x-2}{{\sqrt{x-2}}}})^2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知函數(shù)f(x)的定義域為R,f′(x)為函數(shù)f(x)的導函數(shù),當x∈[0.+∞)時,2sinxcosx-f′(x)>0且?x∈R,f(-x)+f(x)+cos2x=1.則下列說法一定正確的是( 。
A.$\frac{1}{4}$-f(-$\frac{5π}{6}$)>$\frac{3}{4}$-f(-$\frac{2π}{3}$)B.$\frac{1}{4}$-f(-$\frac{5π}{6}$)>$\frac{3}{4}$-f(-$\frac{4π}{3}$)
C.$\frac{3}{4}$-f($\frac{π}{3}$)>$\frac{1}{2}$-f($\frac{3π}{4}$)D.$\frac{1}{2}$-f(-$\frac{3π}{4}$)>$\frac{3}{4}$-f($\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.下列命題中,真命題的個數(shù)有( 。
①?x∈R,x2-x+$\frac{1}{4}$≥0;
②?x>0,lnx+$\frac{1}{lnx}$≤2;
③“a>b”是“ac2>bc2”的充要條件;
④f(x)=3x-3-x是奇函數(shù).
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知$α∈(\frac{π}{2},π)$,且$sinα=\frac{4}{5}$,則tanα=( 。
A.$\frac{3}{4}$B.$-\frac{3}{4}$C.$\frac{4}{3}$D.$-\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=4tanx sin($\frac{π}{2}$-x)cos(x-$\frac{π}{3}$)-$\sqrt{3}$.
(1)求f(x)的最小正周期π;
(2)求f(x)的單調增區(qū)間[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$],k∈Z.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知$\overrightarrow{a},\overrightarrow$為同一平面內的兩個不共線的向量,且$\overrightarrow{a}$=(1,2),$\overrightarrow$=(x,6),若|$\overrightarrow{a}-\overrightarrow$|=2$\sqrt{5}$,向量$\overrightarrow{c}$=2$\overrightarrow{a}+\overrightarrow$,則$\overrightarrow{c}$=(1,10).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.若點M(x,y)為平面區(qū)域$\left\{\begin{array}{l}x+y≥2\\ x≤1\\ y≤2\end{array}\right.$上的一個動點,則x-y的取值范圍是( 。
A.[-2,0]B.[-1,0]C.[-1,-2]D.[0,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.若α∈(0,$\frac{π}{2}$),且cos2α=$\frac{{2\sqrt{5}}}{5}$sin(α+$\frac{π}{4}$),則tanα=$\frac{1}{3}$.

查看答案和解析>>

同步練習冊答案