3.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-2,-4),|$\overrightarrow{c}$|=$\sqrt{5}$,若($\overrightarrow{c}$-$\overrightarrow$)•$\overrightarrow{a}$=$\frac{15}{2}$,則$\overrightarrow{a}$與$\overrightarrow{c}$的夾角為( 。
A.30°B.60°C.150°D.120°

分析 求出$\overrightarrow{a}•\overrightarrow{c}$,再計(jì)算cos<$\overrightarrow{a},\overrightarrow{c}$>即可得出.

解答 解:∵($\overrightarrow{c}$-$\overrightarrow$)•$\overrightarrow{a}$=$\overrightarrow{a}•\overrightarrow{c}$-$\overrightarrow{a}•\overrightarrow$=$\frac{15}{2}$,$\overrightarrow{a}•\overrightarrow$=-2-8=-10,
∴$\overrightarrow{a}•\overrightarrow{c}$=$\frac{15}{2}$-10=-$\frac{5}{2}$,
∴cos<$\overrightarrow{a},\overrightarrow{c}$>=$\frac{\overrightarrow{a}•\overrightarrow{c}}{|\overrightarrow{a}||\overrightarrow{c}|}$=$\frac{-\frac{5}{2}}{\sqrt{5}×\sqrt{5}}$=-$\frac{1}{2}$,
∴$\overrightarrow{a}$與$\overrightarrow{c}$的夾角為120°.
故選D.

點(diǎn)評 本題考查了平面向量的數(shù)量積運(yùn)算,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.一段長為36m的籬笆圍成一個(gè)矩形菜園,求這個(gè)矩形菜園的最大面積( 。
A.79B.80C.81D.82

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.$tan(-\frac{π}{4})$=( 。
A.1B.-1C.$\frac{{\sqrt{2}}}{2}$D.$-\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.過定點(diǎn)M的直線:kx-y+1-2k=0與圓:(x+1)2+(y-5)2=9相切于點(diǎn)N,則|MN|=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=lnx,g(x)=$\frac{a}{x}$(a>0),設(shè)F(x)=f(x)+g(x).
(1)求函數(shù)F(x)的單調(diào)區(qū)間;
(2)若以函數(shù)y=F(x)(x∈(0,3])圖象上任意一點(diǎn)P(x0,y0)為切點(diǎn)的切線的斜率k≤$\frac{1}{2}$恒成立,求實(shí)數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖是由正三棱椎與正三棱柱組合而成的幾何體的三視圖,該幾何體的頂點(diǎn)都在半徑為R的球面上,則R=( 。
A.1B.$\sqrt{2}$C.$\frac{1+\sqrt{2}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=x2+mx+$\frac{mx+1}{{x}^{2}}$+n(m,n∈R)有零點(diǎn),則m2+n2的取值范圍是[$\frac{4}{5}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.實(shí)數(shù)m分別取什么數(shù)值時(shí),復(fù)數(shù)z=(m2+5m+6)+(m2-2m-15)i
(1)對應(yīng)的點(diǎn)在x軸的上方;
(2)$\frac{z}{1+i}$為純虛數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.
(Ⅰ)證明:PA⊥BD;
(II)若PD=AD,求AD與平面PAB所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案