18.$tan(-\frac{π}{4})$=( 。
A.1B.-1C.$\frac{{\sqrt{2}}}{2}$D.$-\frac{{\sqrt{2}}}{2}$

分析 由條件利用誘導(dǎo)公式化簡(jiǎn)所給的三角函數(shù)式,可得結(jié)果.

解答 解:$tan(-\frac{π}{4})$=-tan$\frac{π}{4}$=-1,
故選:B.

點(diǎn)評(píng) 本題主要考查利用誘導(dǎo)公式進(jìn)行化簡(jiǎn)求值,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.執(zhí)行如圖程序框圖,若輸出y=2,則輸入的x為( 。
A.-1或$±\sqrt{2}$B.±1C.1或$\sqrt{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)bn=(2n+1)2n,Tn是數(shù)列{bn}的前n項(xiàng)和,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,an≠0,anan+1=4Sn-1.
(1)求{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足$\frac{{a}_{n}}{_{n}}$=2n-1(n∈N*),設(shè)Tn是數(shù)列{bn}的前n項(xiàng)和,證明Tn<6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.$\overrightarrow{a}$,$\overrightarrow$都為向量,則下列式子正確的是( 。
A.$\overrightarrow{a}$•|$\overrightarrow{a}$|=$\overrightarrow{a}$2B.($\overrightarrow{a}$•$\overrightarrow$)2=$\overrightarrow{a}$2•$\overrightarrow$2C.($\overrightarrow{a}$•$\overrightarrow$)$\overrightarrow{c}$=$\overrightarrow{a}$($\overrightarrow$•$\overrightarrow{c}$)D.|$\overrightarrow{a}$•$\overrightarrow$|≤|$\overrightarrow{a}$||$\overrightarrow$|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,梯形ABCD中,AB∥CD,AB=2,CD=4,BC=AD=$\sqrt{5}$,E和F分別為AD與BC的中點(diǎn),對(duì)于常數(shù)λ,在梯形ABCD的四條邊上恰好有8個(gè)不同的點(diǎn)P,使得$\overrightarrow{PE}$•$\overrightarrow{PF}$=λ成立,則實(shí)數(shù)λ的取值范圍是( 。
A.(-$\frac{5}{4}$,-$\frac{9}{20}$)B.(-$\frac{5}{4}$,$\frac{11}{4}$)C.(-$\frac{1}{4}$,$\frac{11}{4}$)D.(-$\frac{9}{20}$,-$\frac{1}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知四邊形ABCD中,E,F(xiàn),G,H分別是線段AB,BC,CD,DA的中點(diǎn),圓O為四邊形EFGH的內(nèi)切圓,則在正方形ABCD內(nèi)投一點(diǎn),該點(diǎn)落在圓O內(nèi)的概率為$\frac{π}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-2,-4),|$\overrightarrow{c}$|=$\sqrt{5}$,若($\overrightarrow{c}$-$\overrightarrow$)•$\overrightarrow{a}$=$\frac{15}{2}$,則$\overrightarrow{a}$與$\overrightarrow{c}$的夾角為(  )
A.30°B.60°C.150°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.從4臺(tái)甲型和5臺(tái)乙型電視機(jī)中任意取出2臺(tái),其中甲型與乙型電視機(jī)各1臺(tái),則不同的取法種數(shù)為20.

查看答案和解析>>

同步練習(xí)冊(cè)答案