A. | -1 | B. | $\frac{6}{5}$ | C. | 5 | D. | 6 |
分析 由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標,代入目標函數(shù)得答案.
解答 解:由約束條件$\left\{\begin{array}{l}x-y+2≥0\\ x+y≥0\\ 4x-y-1≤0\end{array}\right.$作出可行域如圖,
聯(lián)立$\left\{\begin{array}{l}{x-y+2=0}\\{4x-y-1=0}\end{array}\right.$,解得A(1,3),
化目標函數(shù)z=2x+y,得y=-2x+z,
由圖可知,當直線y=-2x+z過點A(1,3)時,直線在y軸上的截距最大,z有最大值為5.
故選:C.
點評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{1}{3}$ | B. | -$\frac{2\sqrt{2}}{3}$ | C. | $\frac{2\sqrt{2}}{3}$ | D. | $±\frac{2\sqrt{2}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=$\frac{5}{3}$x | B. | y=$\frac{3}{5}$x | C. | y=±$\frac{5}{3}$x | D. | y=±$\frac{3}{5}$x |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
條件 | 方程 |
①△ABC周長為10 | C1:y2=25 |
②△ABC面積為10 | C2:x2+y2=4(y≠0) |
③△ABC中,∠A=90° | C3:$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1(y≠0) |
A. | C3,C1,C2 | B. | C1,C2,C3 | C. | C3,C2,C1 | D. | C1,C3,C2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com