10.在平面幾何中:△ABC的∠C的內(nèi)角平分線CE分AB所成線段的比為$\frac{AC}{BC}$=$\frac{AE}{BE}$.把這個(gè)結(jié)論類比到空間:在三棱錐A-BCD中(如圖),平面DEC平分二面角-CD-B且與AB相交于E,則得到類比的結(jié)論是$\frac{AE}{EB}$=$\frac{{S}_{△ACD}}{{S}_{△BCD}}$.

分析 三角形的內(nèi)角平分線定理類比到空間三棱錐,根據(jù)面積類比體積,長(zhǎng)度類比面積,從而得到$\frac{{V}_{A-CDE}}{{V}_{B-CDE}}$=$\frac{{S}_{△ACD}}{{S}_{△BCD}}$.

解答 解:在△ABC中作ED⊥AC于D,EF⊥BC于F,則ED=EF,
∴$\frac{AC}{BC}$=$\frac{{S}_{△AEC}}{{S}_{△BCE}}$=$\frac{AE}{EB}$,
根據(jù)面積類比體積,長(zhǎng)度類比面積可得:$\frac{{V}_{A-CDE}}{{V}_{B-CDE}}$=$\frac{{S}_{△ACD}}{{S}_{△BCD}}$,
即$\frac{AE}{EB}$=$\frac{{S}_{△ACD}}{{S}_{△BCD}}$,
故答案為:$\frac{AE}{EB}$=$\frac{{S}_{△ACD}}{{S}_{△BCD}}$.

點(diǎn)評(píng) 本題考查了類比推理,將平面中的性質(zhì)類比到空間.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.(1)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,若S2=4,an+1=2Sn+1,n∈N+,則a1=1
(2)設(shè)Sn為等比數(shù)列{an}的前n項(xiàng)和,若a1=1且3S1,2S2,S3成等差數(shù)列,則an=3n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知對(duì)數(shù)函數(shù) f ( x)的圖象過點(diǎn)(10,1),對(duì)數(shù)函數(shù)g( x)的圖象過點(diǎn)($\frac{1}{10}$,1).
(1)求 f(x),g (x)的解析式;
(2)求當(dāng) x 為何值時(shí):①f ( x )>g ( x),②f ( x )=g ( x),③f ( x )<g ( x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某種產(chǎn)品的廣告費(fèi)支出x與銷售額y之間有如下五組對(duì)應(yīng)數(shù)據(jù):
x(萬元)24568
y(萬元)2836525678
(1)求y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$
(2)根據(jù)(1)中的線性回歸方程,回答下列問題:
(i)當(dāng)廣告費(fèi)支出為10萬元時(shí),預(yù)測(cè)銷售額是多少?
(ii)從已知的五組數(shù)據(jù)中任意抽取兩組數(shù)據(jù),求這兩組數(shù)據(jù)中至少有一組數(shù)據(jù)其銷售額的實(shí)際值y與預(yù)測(cè)值$\stackrel{∧}{y}$之差的絕對(duì)值不超過3萬元的概率
參考數(shù)據(jù):$\sum_{i=1}^{5}$xi2=145,$\sum_{i=1}^{5}$yi2=14004,$\sum_{i=1}^{5}$xiyi=1420
附:回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$中斜率和截距的最小二乘估計(jì)公式分別為:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\stackrel{∧}{y}$-$\stackrel{∧}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知直線l與直線3x+4y-7=0平行,和兩坐標(biāo)軸的正半軸相交,且在第一象限內(nèi)所成的三角形的面積為18,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知等差數(shù)列{an}中,a1009=0,則a1+a2+…+am=a1+a2+…+a2017-m(m<2017).若等比數(shù)列{bn}中,若b1010=1,類比上述等差數(shù)列的結(jié)論,試寫出等比數(shù)列的結(jié)論為b1b2…bn=b1b2…b2019-n(n<2019,n∈N*)成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知變量x,y滿足$\left\{\begin{array}{l}{x-y≥0}\\{4x-y-4≤0}\\{x≥a}\end{array}\right.$,點(diǎn)(x,y)對(duì)應(yīng)的區(qū)域的面積為$\frac{25}{24}$,則x2+y2的取值范圍是( 。
A.[$\frac{1}{2}$,$\frac{9}{4}$]B.[$\frac{1}{4}$,$\frac{9}{4}$]C.[$\frac{1}{4}$,$\frac{32}{9}$]D.[$\frac{1}{4}$,$\frac{17}{4}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知n≥2且n∈N*,對(duì)n2進(jìn)行“分拆”:22→(1,3),32→(1,3,5),42→(1,3,5,7),…,那么289的“分拆”所得的中位數(shù)是(  )
A.29B.21C.19D.17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.己知函數(shù)f(x)=$\left\{\begin{array}{l}{f(x+1),x<2}\\{{2}^{x},x≥2}\end{array}\right.$,則f(log23)=(  )
A.2B.4C.5D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案