7.已知a為函數(shù)f(x)=x3-3x的極小值點,則a=( 。
A.-1B.-2C.2D.1

分析 求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,求出函數(shù)的極值點即可.

解答 解:f′(x)=3x2-3,
令f′(x)>0,解得:x>1或x<-1,
令f′(x)<0,解得:-1<x<1,
故f(x)在(-∞,-1)遞增,在(-1,1)遞減,在(1,+∞)遞增,
故1是極小值點,
故a=1,
故選:D.

點評 本題考查了函數(shù)的單調(diào)性、極值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)A,B為相互獨立事件,下列命題中正確的是( 。
A.A與B是對立事件B.A與B是互斥事件
C.A與$\overline{B}$是相互獨立事件D.$\overline{A}$與$\overline{B}$不相互獨立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知$f(x)=\frac{alnx}{x}({a≠0})$,
(1)寫出f(x)的定義域.
(2)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在平行六面體ABCD-A′B′C′D′中,AB=5,AD=3,AA′=7,∠BAD=∠BAA′=∠DAA′=60°,則BD的長為$\sqrt{19}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.等差數(shù)列的前4項之和為30,前8項之和為100,則它的前12項之和為( 。
A.130B.170C.210D.260

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知橢圓 C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)與雙曲線 C2:x2-y2=4 有相同的右焦點F2,點P是C1與C2的一個公共點,若|PF2|=2,則橢圓 C1的離心率等于$\frac{{\sqrt{2}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在復(fù)平面內(nèi),復(fù)數(shù)z=i(2-i),則|z|=$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知向量$\overrightarrow{a}$=(1,x),$\overrightarrow$=(1,x-1),若($\overrightarrow{a}$-2$\overrightarrow$)⊥$\overrightarrow{a}$,則|$\overrightarrow{a}$-2$\overrightarrow$|=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知拋物線x2=4y的焦點是F,直線$x-\sqrt{3}y+\sqrt{3}=0$交拋物線于A,B兩點,且|AF|>|BF|,則$\frac{{|{AF}|}}{{|{BF}|}}$=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

同步練習(xí)冊答案