19.在復(fù)平面內(nèi),復(fù)數(shù)z=i(2-i),則|z|=$\sqrt{5}$.

分析 利用復(fù)數(shù)的運(yùn)算法則、模的計(jì)算公式即可得出.

解答 解:復(fù)數(shù)z=i(2-i)=1+2i,
∴|z|=$\sqrt{{1}^{2}+{2}^{2}}$=$\sqrt{5}$.
故答案為:$\sqrt{5}$.

點(diǎn)評 本題考查了復(fù)數(shù)的運(yùn)算法則、模的計(jì)算公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如圖是函數(shù)y=f(x)的導(dǎo)數(shù)的圖象,則正確的判斷是(2)(4).
(1)f(x)在(-2,1)上是增函數(shù);
(2)x=-1是f(x)的極小值點(diǎn);
(3)x=2是f(x)的極小值點(diǎn);
(4)f(x)在(2,4)上是減函數(shù),在(-1,2)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.F1,F(xiàn)2分別是雙曲線x2-$\frac{{y}^{2}}{^{2}}$=1(b>0)的左、右焦點(diǎn),過F2的直線l與雙曲線的左右兩支分別交于A,B兩點(diǎn),若△ABF1是等邊三角形,則該雙曲線的虛軸長為( 。
A.2$\sqrt{6}$B.2$\sqrt{2}$C.$\sqrt{6}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知a為函數(shù)f(x)=x3-3x的極小值點(diǎn),則a=( 。
A.-1B.-2C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0 ) 經(jīng)過點(diǎn) P(1,$\frac{\sqrt{3}}{2}$),離心率 e=$\frac{\sqrt{3}}{2}$.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)過點(diǎn)E (0,-2 ) 的直線l與C相交于P,Q 兩點(diǎn),求△OPQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖在一個(gè)60° 的二面角的棱上有兩個(gè)點(diǎn)A,B,線段分別AC、BD在這個(gè)二面 角的兩個(gè)面內(nèi),并且都垂直于棱AB,且AB=AC=a,BD=2a,則CD 的長為( 。
A.2aB.$\sqrt{5}$aC.aD.$\sqrt{3}$a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.各項(xiàng)均為正數(shù)的等比數(shù)列{an}的前n項(xiàng)和為Sn,若S4=10,S12=130,則S8=( 。
A.-30B.40C.40或-30D.40或-50

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若(x+$\frac{1}{3x}$)n的展開式中前三項(xiàng)的系數(shù)分別為A、B、C,且滿足4A=9(C-B),則展開式中x2的系數(shù)為$\frac{56}{27}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}8x-y-4≤0\\ x+y+1≥0\\ y-4x≤0\end{array}\right.$,目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為2,則$\frac{1}{a}+\frac{1}$的最小值為( 。
A.5B.$\frac{5}{2}$C.$\frac{9}{2}$D.9

查看答案和解析>>

同步練習(xí)冊答案