A. | 3 | B. | $\frac{13}{4}$ | C. | $\frac{15}{4}$ | D. | 4 |
分析 由等比數(shù)列{an}的性質(zhì)可得:S3,S6-S3,S9-S6成等比數(shù)列,可得:$({S}_{6}-{S}_{3})^{2}$=S3•(S9-S6),又$\frac{S_6}{S_3}$=4,代入計(jì)算即可得出.
解答 解:由等比數(shù)列{an}的性質(zhì)可得:S3,S6-S3,S9-S6成等比數(shù)列,
∴$({S}_{6}-{S}_{3})^{2}$=S3•(S9-S6),
∵$\frac{S_6}{S_3}$=4,∴${S}_{3}=\frac{1}{4}$S6.
∴$(\frac{3}{4}{S}_{6})^{2}$=$\frac{1}{4}{S}_{6}$(S9-S6),
解得S9=$\frac{13}{4}$S6.
即$\frac{S_9}{S_6}$=$\frac{13}{4}$
故選:B.
點(diǎn)評(píng) 本題考查了等比數(shù)列的求和公式及其性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{2}{e}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | “若x2=1,則x=1或x=-1”的否命題為“若x2≠1,則x≠1或x≠-1” | |
B. | 已知命題“p∧q”為假命題,則命題“p∨q”也是假命題 | |
C. | 設(shè)U為全集,集合A,B滿足(∁UA)∩B=(∁UB)∩A,則必有A=B=∅ | |
D. | 設(shè)λ為實(shí)數(shù),“?x∈[-1,1],滿足$\sqrt{1-{x}^{2}}$≤λ”的充分不必要條件為“λ≥1” |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com