2.△ABC中,已知a=7,b=14,A=30°,則△ABC有(  )
A.一解B.二解C.無解D.一解或二解

分析 根據(jù)正弦定理求得sinB=1,得出B=90°,△ABC有一解.

解答 解:△ABC中,a=7,b=14,A=30°,
由正弦定理得$\frac{a}{sinA}$=$\frac{sinB}$,
∴sinB=$\frac{sinA•b}{a}$=$\frac{sin30°×14}{7}$=1;
又B∈(0°,180°),
∴B=90°,
∴C=60°;
∴△ABC有一解.
故選:A.

點評 本題考查了正弦定理的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.正四棱柱ABCD-A1B1C1D1中,底面邊長為2,側(cè)棱長為4,則B1點到平面AD1C的距離為( 。
A.$\frac{8}{3}$B.$\frac{{2\sqrt{2}}}{3}$C.$\frac{{4\sqrt{2}}}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若數(shù)列{an}的前n項和為${S_n}=\frac{{n{a_n}}}{2},{a_2}=2$,則數(shù)列{an}的通項公式是an=2(n-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知$sin(\frac{2π}{3}+α)=\frac{1}{3}$,則$cos(\frac{5π}{6}-α)$=(  )
A.$-\frac{1}{3}$B.$\frac{1}{3}$C.$-\frac{{2\sqrt{2}}}{3}$D.$\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若函數(shù)f(x)=(x2-ax+a+1)ex(a∈N)在區(qū)間(1,3)只有1個極值點,則曲線f(x)在點(0,f(0))處切線的方程為x-y+6=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.sin21°+sin22°+sin23°+…+sin288°+sin289°的值為 (  )
A.89B.44C.$44\frac{1}{2}$D.$44+\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.用秦九韶算法計算函數(shù)f(x)=2x5-3x3+2x2+x-3的值,若x=2,則V3的值是12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為e=$\frac{1}{2}$,F(xiàn)1,F(xiàn)2分別為左右焦點,B1為短軸的一個端點,△B1F1F2的面積為$\sqrt{3}$
(Ⅰ)求橢圓E的方程
(Ⅱ)若A,B,C,D是橢圓上異于頂點且不重合的四個點,AC于BD相交于點F1,且$\overrightarrow{AC}•\overrightarrow{BD}$=0,求$\frac{|AC|}{|BD|}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如果實數(shù)x、y滿足關(guān)系$\left\{\begin{array}{l}{x+y-2≤0}\\{x-y≤0}\\{2x-y+2≥0}\end{array}\right.$則(x-1)2+y2的最小值是( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊答案