分析 由已知及正弦定理可得sinB=$\frac{1}{2}$,利用大邊對大角可求B為銳角,利用特殊角的三角函數(shù)值即可得解B的值.
解答 解:在△ABC中,∵a=2$\sqrt{3}$,b=$\sqrt{6}$,A=45°,
∴由正弦定理可得:sinB=$\frac{b•sinA}{a}$=$\frac{\sqrt{6}×\frac{\sqrt{2}}{2}}{2\sqrt{3}}$=$\frac{1}{2}$,
∵b<a,可得B為銳角,
∴B=30°.
故答案為:30°.
點評 本題主要考查了正弦定理,大邊對大角,特殊角的三角函數(shù)值在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{1}{2}+\frac{i}{2}$ | B. | $-\frac{1}{2}-\frac{i}{2}$ | C. | $\frac{1}{2}-\frac{i}{2}$ | D. | $\frac{1}{2}+\frac{i}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{5}{8}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①S=S+i、趇=i+1 | B. | ①S=S+i2、趇=i+1 | C. | ①i=i+1、赟=S+i | D. | ①i=i+1、赟=S+i2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com