18.高二某班班會(huì)選出包含甲、乙、丙的5名學(xué)生發(fā)言,要求甲、乙兩人的發(fā)言順序必須相鄰,而乙、丙兩人的發(fā)言順序不能相鄰,那么不同的發(fā)言順序共有(  )
A.48種B.36種C.24種D.12種

分析 利用間接法,求出甲乙捆綁,與其余3個(gè)人全排、要求甲、乙兩人的發(fā)言順序必須相鄰,而乙、丙兩人的發(fā)言順序相鄰情況,即可得出結(jié)論.

解答 解:由題意,甲乙捆綁,與其余3個(gè)人全排,有${A}_{2}^{2}{A}_{4}^{4}$=48種,
其中要求甲、乙兩人的發(fā)言順序必須相鄰,而乙、丙兩人的發(fā)言順序相鄰,有${A}_{2}^{2}{A}_{3}^{3}$=12種,
∴要求甲、乙兩人的發(fā)言順序必須相鄰,而乙、丙兩人的發(fā)言順序不能相鄰,
那么不同的發(fā)言順序共有48-12=36種.
故選:B.

點(diǎn)評(píng) 本題考查排列知識(shí)的運(yùn)用,考查捆綁法、間接法,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.函數(shù)f(x)=log2(x2+2x+a),g(x)=2x,對(duì)于任意的實(shí)數(shù)x1,總存在x2,使得f(x2)=g(x1),實(shí)數(shù)a的取值范圍是( 。
A.a>2B.a≤2C.a>1D.a≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知f(x)=ax-$\frac{a}{x}$-10lnx,h(x)=-x2+(m-2)x+6.
(Ⅰ)若函數(shù)f(x)在其定義域上是增函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)a=4時(shí),對(duì)于任意x1,x2∈(0,1),均有h(x1)≥f(x2)恒成立,試求參數(shù)m的取值范圍;
(Ⅲ)當(dāng)a∈[5,+∞)時(shí),曲線y=f(x)總存在相異的兩點(diǎn)P(x1,f(x1)),Q(x2,f(x2)),使得曲線y=f(x)在點(diǎn)P,Q處的切線互相平行,求證:x1x2>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.直線l:3x+4y+4=0與圓C:(x-2)2+y2=9交于A,B兩點(diǎn),則cos∠ACB=( 。
A.-$\frac{1}{9}$B.$\frac{1}{9}$C.-$\frac{2}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知60°的圓心角所對(duì)的圓弧長(zhǎng)是4cm,則這個(gè)扇形的面積等于$\frac{24}{π}$cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知復(fù)數(shù)z=$\frac{i}{1-i}$(其中i為虛數(shù)單位),則z•$\overline z$=( 。
A.1B.$\frac{{\sqrt{3}}}{2}$C.$\frac{3}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.直線y=$\frac{1}{2}$x-b與曲線y=-$\frac{1}{2}$x+lnx相切,則實(shí)數(shù)b的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知數(shù)列{an}滿(mǎn)足$\frac{2{a}_{n}}{{a}_{n}+2}$=an+1(n∈N*),且a1=$\frac{1}{1006}$.
(I)求證:數(shù)列{$\frac{1}{{a}_{n}}$}是等差數(shù)列,并求通項(xiàng)an
(2)若bn=$\frac{2-2010{a}_{n}}{{a}_{n}}$,cn=bn•($\frac{1}{2}$)n,(n∈N*),且Tn=c1+c2+…+cn,求證:1≤Tn<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,在幾何體ABCDE中,四邊形ABCD是正方形,△BCE是正三角形,AB⊥平面BCE,F(xiàn),G分別是線段CD,BE的中點(diǎn).
(Ⅰ)求證:直線FG∥平面ADE;
(Ⅱ)若AB=2,求三棱錐A-DEG的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案